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High-spatial resolution UAV multispectral data complementing satellite imagery 
to characterize a chinstrap penguin colony ecosystem on deception island 
(Antarctica)
Alejandro Román , Gabriel Navarro , Isabel Caballero and Antonio Tovar-Sánchez

Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN), Spanish National Research Council 
(CSIC), Puerto Real, Spain

ABSTRACT
Remote sensing has evolved as an alternative to traditional techniques in the spatio-temporal 
monitoring of the Antarctic ecosystem, especially with the rapid expansion of the use of 
Unmanned Aerial Vehicles (UAVs), providing a centimeter-scale spatial resolution. In this study, 
the potential of a high-spatial resolution multispectral sensor embedded in a UAV is compared to 
medium resolution satellite remote sensing (Sentinel-2 and Landsat 8) to monitor the character
istics of the Vapor Col Chinstrap penguin (Pygoscelis antarcticus) colony ecosystem (Deception 
Island, South Shetlands Islands, Antarctica). Our main objective is to generate precise thematic 
maps of the typical ecosystem of penguin colonies derived from the supervised analysis of the 
spectral information obtained with these remote sensors. For this, two parametric classification 
algorithms (Maximum Likelihood, MLC, and Spectral Angle, SAC) and two non-parametric machine 
learning classifiers (Support Vector Machine, SVM, and Random Forest, RFC) are tested with UAV 
imagery, obtaining the best results with the SVM classifier (93.19% OA). Our study shows that the 
use of UAV outperforms satellite imagery (87.26% OA with Sentinel-2 Level 2 (S2L2) and 70.77% OA 
with Landsat 8 Level 2 (L8L2) in SVM classification) in the characterization of the substrate due to 
a higher spatial resolution, although differences between UAV and S2L2 are minimal. Thus, both 
sensors used in tandem could provide a broader and more precise view of how the area covered by 
the different elements of these ecosystems can change over time in a global climate change 
scenario. In addition, this study represents a precise UAV monitoring that takes place in this 
Chinstrap penguin colony, estimating a total coverage of approximately 20,000 m2 of guano 
areas in the study period.
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Introduction

A high diversity of animal species, algae lakes, lichens 
and moss covers constitutes an ecosystem strongly 
affected by climate change, Antarctica (Huang et al. 
2010). Penguins have an important function in the 
Antarctic ecosystem, occupying a middle position in 
the Antarctic food chain with a limited diet based 
mainly on the consumption of krill (Euphasia superba) 
in the Antarctic Peninsula, and on the consumption of 
a large variety of crustacean fish taxa in other regions 
of Antarctica (Ratcliffe and Trathan 2011). They are 
also considered as “marine sentinels” or “indicators” 
of environmental quality by the Commission for the 
Conservation of Antarctic Marine Resources 
(CCAMLR), as the fact that they return to their 
colonies year after year makes them the easiest krill 
predator in the Southern Ocean ecosystem to study 

(Pfeifer et al. 2019; Waluda et al. 2014; Witharana and 
Lynch 2016). The Adélie (Pygoscelis adelieae), 
Chinstrap (Pygoscelis antarcticus) and Gentoo 
(Pygoscelis Papua) are the most usual penguin species 
on the Antarctic Peninsula (Barbosa et al. 2012). 
Adélie penguins are much more suited to ice environ
ments and breed on average further South, while 
Chinstrap colonies are usually located in less icy 
areas situated in rocky valleys open to the sea, being 
restricted to the North of the peninsular region and 
the Scotia Arc islands (Clucas et al. 2014; Kokubun 
et al. 2015; Strycker et al. 2020).

Climate change is causing major alterations in the 
characteristic habitats of penguin species, through 
a decrease in the ice coverage due to global warm
ing and through an increase in the variability of the 
penguin food supply, which directly affects the 
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entire Antarctic food web (Calviño-Cancela and 
Martín-Herrero 2016; Forcada et al. 2006). 
Consequently, some penguin populations have 
been affected in the Antarctic Peninsula in recent 
decades (Dunn et al. 2016), such as a decline in 
Chinstrap and Adélie penguins (Barbosa et al. 2012; 
Dunn et al. 2016; Strycker et al. 2020) or increase/ 
decline phases in Gentoo penguins (Clucas et al. 
2014; Dunn et al. 2016; Lynch et al. 2016). 
Generally, this decline may be due to changes in 
the krill populations that are seriously damaged by 
climate change and fisheries overexploitation 
(Atkinson et al. 2019; Kawaguchi et al. 2013; Sander 
et al. 2007), but also by other potential impacts on 
a local scale associated with tourism, extreme 
weather events or disease outbreaks (Bricher, 
Lucieer, and Woehler 2008; Lynch et al. 2019).

Monitoring these ecosystems is challenging due to 
logistical difficulties related to the inaccessibility of 
these remote regions, the economic cost of deploying 
teams on the ground, or the weather conditions on 
the Antarctic continent that are characterized by 
almost constant cloudiness and extreme tempera
tures (Ancel et al. 2017; Brown 2018; Mustafa et al. 
2017). Satellite remote sensing is a tool that can help 
overcome some of these difficulties. In general, 
research carried out with satellite imagery to monitor 
the abundance of penguins has been carried out at 
breeding colonies (e.g. Lynch and Schwaller 2014; 
Mustafa et al. 2017; Pfeifer et al. 2019). The use of 
satellites to monitor the evolution of penguin popula
tions was first described by Schwaller, Benninghoff, 
and Olson (1984), that characterized the spectral sig
nature of the Adélie penguin guano, especially in the 
Short-Wave Infrared (SWIR) bands, and it was used to 
distinguish it from the other elements of the ecosys
tem, such as vegetation, rocks or snow, among others 
(Brown 2018; LaRue et al. 2014). Since then, several 
studies have been carried out (e.g. Fretwell and 
Trathan 2009, 2020; Fretwell et al. 2015; Naveen 
et al. 2012; Schwaller, Southwell, and Emmerson 
2013) using high/medium resolution satellites such 
as Sentinel-2, Quickbird, World-View, Landsat 8 or 
SPOT for the monitoring of these colonies. Despite 
the benefits of satellite remote sensing (Table 1), 
local-scale ecosystem monitoring research with satel
lite remote sensing technology has shortcomings. 
Firstly, it is vulnerable to adverse weather conditions. 
Secondly, the coarse spatial resolution makes 

complicated to accurately describe the boundaries 
of different underlying surfaces, resulting in lower 
classification accuracy than Unmanned Aerial 
Vehicles (UAVs) (Lucieer et al. 2014b; Turner et al. 
2014).

The appearance of remote sensing with UAVs, as 
an intermediate step between in situ and satellite 
observations, provided a wide range of new possibi
lities for high-resolution monitoring of ecosystems 
(Lucieer et al. 2014a; Malenovský et al. 2017; 
Miranda et al. 2020; Tovar-Sánchez et al. 2021). In 
addition, they offer an alternative approach to out
weigh the disadvantages of ground-based sampling 
and satellite remote sensing in spatial ecology since: i) 
they supply centimeter-scale spatial resolution data 
(approximately <10 cm/pixel); ii) have greater control 
of temporal resolution if weather conditions allow it; 
iii) are generally not limited by the presence of clouds, 
except for the appearance of low clouds that could 
drastically affect the results achieved with 
a multispectral sensor; iv) have a relatively low cost 
compared to other remote sensing tools; v) different 
sensors can be mounted on the UAV according to the 
objective of the study (thermal, hyperspectral, multi
spectral, RGB, LiDAR); vi) are a less invasive tool than 
traditional sampling on foot, although during take-off 
and landing procedures wildlife may be bothered; vii) 
they reduce danger for humans during in situ sam
pling, particularly in areas with obstructed access; and 
viii) they are easy to deploy in the field (Lucieer et al. 
2014b; Turner et al. 2014). Remote sensing can con
stitute a synoptic, supplementary and mighty techni
que for ecosystem monitoring, so that UAV images 
are better suited to local case studies (e.g. counting of 
individuals in a concrete colony of penguins) while 
satellite images are better suited to more general case 
studies (e.g. estimation of total penguin colony popu
lation estimation from guano coverage in a specific 

Table 1. Comparative table of the characteristics of satellite and 
UAV imagery.

Satellite Imagery UAV Imagery

Global and synoptic vision of 
the Earth’s surface

Higher spatial resolution (centimeter/ 
pixel)

Complete spatial coverage of 
whole regions 
Frequent repeat coverage

Higher control of temporal resolution, 
although it does not cover areas as 
large as the satellite

Mostly publicly and freely 
available accessible data

Low cost equipment compared to other 
remote sensing tools

High dependence on the 
weather in data collection

Data capture below the clouds
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region/island). As a result, the application of this tool 
on Antarctica is becoming more recurrent, due to the 
opportunity of obtaining information with an unpre
cedented level of detail in these regions of the planet 
that are so difficult to monitor (Miranda et al. 2020). 
Several studies highlight the use of UAVs for the 
census and monitoring of Antarctic wildlife, including 
Bird et al. (2020), Dunn et al. (2021), Korczak-Abshire 
et al. (2019) and Hodgson et al. (2018).

One of the most commonly used techniques for 
ecosystem monitoring are the pixel-based classifica
tion methods, which allow the assignment of thematic 
classes of multiband images based solely on their 
spectral characteristics, and can be split into supervised 
and non-supervised methods. Non-supervised classi
fiers are used when the characteristics of the objectives 
are limited or there is not enough information about 
each class to generate a training file (IsoData and 
K-means). In contrast, supervised classifiers are used 
when there is information about different terrain fea
tures, as they use the training samples in order to learn 
the characteristics of the target classes. In this case, 
there are parametric classification algorithms that give 
accurate results when working with unimodal data, 
such as the Maximum Likelihood, Spectral Angle or 
the Minimum Distance algorithms (Román et al. 
2021). However, these algorithms are limited when 
working with multimodal data, since they assume 
that these follow a Normal distribution and this rarely 
happens in remote sensing data. As a solution to these 
limitations, non-parametric machine learning classifiers 
are used, such as the Random Forest (RF), Support 
Vector Machine (SVM) or Artificial Neural Networks 
(ANN) (Belgiu and Dragut 2016; Liu, Shi, and Zhang 
2011), that are more frequently used in ecological 
monitoring studies (e.g. Belgiu and Dragut 2016; 
Kattenborn et al. 2019).

Considering the importance of the Antarctic pen
guin colonies, this study explores the effectiveness of 
an UAV equipped with the dual multispectral sensor 
Micasense RedEdge-MX, comparing it with the med
ium spatial resolution satellite sensors (Sentinel-2 
and Landsat 8). The main objective is to demonstrate 
the potential of the UAV, used as a tandem with 
satellite remote sensing, in monitoring the elements 
of these ecosystems using the Vapor Col penguin 
colony (Deception Island, Antarctica) as a case 
study. To do this, i) we test four machine learning 
techniques to prepare thematic maps of the area of 

interest; ii) we compare the reflectance data 
obtained between the satellite sensors and the cali
brated UAV-equipped sensor; and iii) we carry out an 
accuracy assessment of the correlation analysis. This 
study highlights the potential of using the UAV in 
tandem with satellite data for monitoring Antarctic 
penguin colonies, determining the optimal classifica
tion algorithm that works best with the spectral 
information derived from the different land cover 
classes selected in this study. In addition, it repre
sents the most up-to-date quantification of the total 
guano coverage of the Vapor Col penguin colony, 
a fact that can serve as a basis for later research that 
seeks to analyze the fertilizing effect of guano for the 
appearance of lichens or mosses species in the 
Antarctic penguin colonies ecosystem, and also to 
estimate the number of penguins.

Materials and methods

Study area

Deception Island (62°55ʹS 60°37ʹW) (Figure 1(b)) is 
a volcanic island placed in the South Shetland 
Islands archipelago (Figure 1(a)) (Jerez et al. 2013; 
Ibáñez et al. 2003). It consists of a central caldera 
covered by seawater known as Port Foster, and con
nected to the Bransfield Strait by the Neptune’s 
Bellow channel (Angulo-Preckler et al. 2021; Duarte 
et al. 2021; Smith et al. 2003). In the last 160 years, 
several small-scale volcanic eruptions have been 
documented, although not comparable with the last 
major and violent eruption that took place 
10,000 years ago, giving the island its current geo
morphological characterization (Angulo-Preckler et al. 
2021; Duarte et al. 2021; Ibáñez et al. 2003). The pre
sence of fumaroles and hydrothermal activity exceed
ing 110°C in locations near the coast of the caldera, 
such as Fumarole Bay, Telefon Bay and Pendulum 
Cove, show the volcanic activity of the island (Ibáñez 
et al. 2003). The island is characterized by a unique 
rugged terrain made up of volcanic slopes, ash- 
covered glaciers and smoky beaches (Duarte et al. 
2021; Smith et al. 2003). In addition, the Chilean 
(Pedro Aguirre Cerda station), British (Station B), 
Argentine (Deception station) and Spanish (Gabriel 
de Castilla station) scientific stations have been 
located there, of which the latter two remain active 
(Duarte et al. 2021; Smith et al. 2003).
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The topographic characteristics of the island make 
it an ideal location for the settlement of Chinstrap 
penguin colonies (Pygoscelis antarcticus) (Smith et al. 
2003). In this case study, monitoring was carried out 
with remote sensing tools in the Vapor Col penguin 
colony (62 ° 59ʹS 60 ° 44ʹW) (Figure 1(c)), which is 
characterized by its ice-free surface and its abrupt 
slope on the southwest coast of the island, near 
Stonethrow Ridge. It is one of the biggest Chinstrap 
penguin colonies at Deception Island (population 
census of 19,177 breeding pairs of chinstrap penguin 
documented by Naveen et al. 2012), although a recess 
since the 1991 until 2008 is observed, evidencing 
a substantial decrease in their population as docu
mented by (Barbosa et al. 1997, 2012).

Satellite imagery

Sentinel-2 (S2) and Landsat 8 (L8) imagery were the 
sources of imagery selected for comparison with the 
reflectance data obtained with the UAV-equipped 
multispectral sensor. The ease for users to access 
these public and high-quality data to carry out coastal 
environmental studies, as well as the similarity 
between the spectral bands between the different 
sensors considered, make these imagery sources 
ideal for the study presented here. However, it is 
interesting to emphasize the existence of other not- 
free or commercial imagery sources with higher spa
tial resolution that could improve the results 

obtained, such as PlanetScope or World-View ima
gery, but that have not been considered in this 
study due to their poor spectral and radiometric 
resolution.

● Sentinel-2 Level 1C (S2L1) and Sentinel-2 Level 
2A (S2L2) top-of-atmospheric (TOA) products 
resampled at a 10 m spatial resolution were 
retrieved from the Copernicus Open Access 
Hub (https://scihub.copernicus.eu/), using the 
Sentinel-2 scene corresponding to 
2 February 2021 (tile 20EPR), the date without 
cloud cover closest to the UAV surveys. The 
Level 2A processing includes the Sen2Cor atmo
spheric correction. Detailed information on the 
Sentinel-2 mission, multispectral instrument 
(MSI) and radiometric characteristics are pro
vided in the User Handbook (ESA, 2015, 2017).

● Landsat 8. Orthorectified and atmospherically 
corrected Level 2 images at 30 m spatial reso
lution were retrieved from Earth Explorer 
(https://earthexplorer.usgs.gov/). The tile of 
study was in path 217 and row 104, and cor
responded to 12 January 2021, also the date 
without cloud cover closest to the UAV sur
veys. Reflectance products were obtained 
using the Land Surface Reflectance Code 
(LaSRC) algorithm. Detailed information on 
the Landsat 8 mission is provided in Knight 
and Kvaran (2014).

Figure 1. Maps showing the location of (a) South Shetland Islands and most concretely, (b) Deception Island (Antarctica) and (c) the 
orthomosaic of the Vapor Col Chinstrap penguin colony generated with the UAV flight (RGB composite with bands Red-668 nm, 
Green-560 nm and Blue-475 nm, Micasense RedEdge-MX dual sensor achieving 6.04 cm/pixel size). (d-e) Pictures taken in the colony 
during the XXXIV Spanish Antarctic Campaign (February 2021) are also shown.
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UAV data collection

An UAV hexacopter with three-bladed propellers 
was used in this study (Condor, Dronetools ©, 
Figure 2(a)), which has a powered electric motor 
by four 7,000 mA Lithium-ion batteries (DJI6010). 
The equipment mounted on the UAV includes 
a multispectral camera to capture the images, the 
Micasense RedEdge-MX multispectral dual sensor 
(Figure 2(b)), which is capable of capturing spectral 
information with its 10 different channels (Figure 2 
(c)): blue (444 nm and 475 nm), green (531 nm and 
560 nm), red (650 nm and 668 nm), red edge 
(705 nm, 717 nm and 740 nm) and near infrared 
(840 nm) wavelengths. The sensor includes its own 
positioning system and Downwelling Light Sensor 
(DLS) with built-in GPS, allowing the control of 
solar angle and light conditions during the flight. 
Radiometric calibration took place through the use 
of the included calibration panel (RP04-1,924,106- 
0B), which was captured before and after the UAV 
surveys. By using both the DLS and the calibration 
panel during the data collection, it is possible to 
obtain a high-quality reflectance map during the 
image processing.

The UAV flight was carried out on 8 February 2021 
in the Vapor Col penguin colony with meteorological 
conditions of almost entirely covered skies, at 
a constant flight height of 100 m achieving approxi
mately 6.04 cm/pixel resolution in acquired imagery. 
Flight planning was carried out with DJI Ground 
Station Pro (Dà-Jiāng Innovations (DJI), Shenzhen, 
Guangdong, GSP v. 2.0.15) software and then 
uploaded to the UAV computer system. 
Seventy percent front and side overlaps were consid
ered when setting up the flight plan. Simultaneously 
to the flights, photos and in situ samples were taken, 
allowing us the validation of the observations made 
with UAVs. We used the MicaSense’s own terrain fol
lowing tool for the dual multispectral camera during 
the UAV survey in order to maintain the established 
flight plan parameters along the entire area. In addi
tion, the Spanish civil aviation regulations (Spanish, 
Agency for Aviation Safety, AESA) were followed dur
ing all UAV operations.

The software Pix4D mapper (Pix4D SA, Lausanne, 
Switzerland) was used to process the multispectral 
images for the generation of the orthomosaics. The 
software creates an orthomosaic of the surface 
reflectance values in three recognized steps: i) initial 

Figure 2. (a) Condor hexacopter used in this research. (b) Micasense RedEdge-MX dual multispectral camera. (c) Sentinel-2, Landsat 8 
and Micasense RedEdge-MX spectral bands comparison.
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processing (image alignment); ii) creation of a 3D 
point cloud; and iii) generation of the digital eleva
tion model (DEM), reflectance orthomosaic and 
indices. Low light conditions made light sensor 
data, and therefore a calibration method that takes 
them into account, necessary. In the last processing 
step, the radiometric processing and calibration 
were performed using the method “Sun Irradiance 
and Sun Angle using DLS IMU.” As a result, a single 
orthomosaic of the surface reflectance ranging 
between 0.0 and 1.0 for each pixel were generated 
for each multispectral band (10 orthomosaics).

Image classification

In this study, the images obtained by remote sensing 
were classified from the spectral behavior of each 
land cover classes. The resolution provided by the 
sensor on board the UAV was even possible to differ
entiate between different types of vegetation (uni
dentified species in this study), soil, snow, guano 
and water. In order to do this, visual interpretation 
based on UAV images with high spatial resolution was 
performed, and then regions of interest (ROIs) were 
selected with the spectral information of each land 
cover class serving as a training file for the subse
quent generation of thematic maps. Four different 
classification techniques (Support Vector Machine 
(SVM), Spectral Angle (SAC), Maximum Likelihood 
(MLC) and Random Forest (RFC)) were tested in UAV 
images to determine which of them works better for 
the classification of these systems. SVM is a machine 
learning algorithm that can deal with statistically 
unknown data derived of small training sets created 
from spectral data, and validated with in situ informa
tion (Vapnick 1995). With this algorithm, training data 
are mapped into a larger-dimensional space by apply
ing kernel functions, where the different cover classes 
are linearly separed by the hyperplane between them 
(Miranda et al. 2020). The results reported by Miranda 
et al. (2020) suggested that the radial base function 
offers the best outcomes when working with spec
trally complex ecosystems, so it was used as the 
transformation nucleus in this case study. One of the 
most commonly used thematic classifiers is the MLC 
that, assuming a Gaussian distribution, determines 
the likelihood that a pixel corresponds to a specific 
thematic class (Richards and Jia 2006; Román et al. 
2021). SAC is an algorithm that determines the 

spectral similarity between a pixel spectrum and an 
existing reference spectra, based on the angular 
deviation between the two spectra, and assuming 
that they form two vectors in an n-dimensional 
space (Richards and Jia 2006; Román et al. 2021). 
RFC is an ensemble classifier that generates decision 
trees from a randomly selected subset of training 
samples and variables through replacement, so the 
same sample can be selected reiteratedly (Belgiu and 
Dragut 2016). We set two parameters for the genera
tion of forest trees: the number of decision trees 
(Ntree), and the number of variables to be selected 
and tested (Mtry).

The training polygons were drawn manually by 
a single person, up to a total of 50 polygons of 
1 m2 maximum for each land cover training set. For 
the performance of the algorithms, the SAGA GIS 
software (Conrad et al. 2015) was used. All bands 
were used as input for each sensor when performing 
image classification (8 bands – from 443 to 842 nm – 
for S2, 5 bands – from 440 to 865 nm – for L8, and 10 
bands – from 444 to 840 nm – for MicaSense 
RedEdge-MX data, according to Figure 2). The para
meters used for each classification algorithm are 
summarized in Table 2.

Once image classification was performed, the 
results were imported into the QGIS software to 
make them go through a sieving process that would 
allow cleaning of the classifications of the individual 
pixels (threshold: groups of 10 pixels) that correspond 
to misclassification errors, and for its graphical repre
sentation. To evaluate the efficiency of the algorithm 
to classify the ecosystem of Antarctic penguin 

Table 2. Input variables selected for each image classification 
algorithm in SAGA GIS software.

SVM RF MLC SAC

Model Source: 
Create from 
polygons

Model Source: 
Create from 
polygons

Model Source: 
Create from 
polygons

Model Source: 
Create from 
polygons

Type: C-SVC Number of 
Samples: 5000

Probability 
Threshold: 0

Spectral Angle 
Threshold: 0

Kernel: radial 
basis function

Number of trees: 
100

Probability 
Reference: 
relative

Degree: 3 Minimum 
Sample 
Count: 2

nu-SVR: 0.5 Maximum 
Categories: 15

SVR Epsilon: 0.1 Regression 
Accuracy: 0.01

Cache Size: 100
Epsilon: 0.001
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colonies, error matrices were drawn up and statistical 
values such as the Cohen’s Kappa Index or Overall 
Accuracy were calculated, following Oloffson et al. 
(2014). This method makes a comparison between 
the thematic map generated and “real” maps from 
the generation of a stratified random sampling 
design. Overall Accuracy (OA) derives from the sum 
of the major diagonal divided by the total number of 
sample units in the error matrix (Congalton and Green 
2009; Oloffson et al. 2014). If OA is above 80%, the 
results obtained could be considered as good and 
reliable. Regarding the Cohen’s Kappa Index, it is 
based on the difference between the actual agree
ment in the error matrix (e.g. the agreement between 
the remotely sensed classification and the reference 
data as indicated by the major diagonal) and the 
chance agreement that is indicated by the row and 
column totals (e.g. marginals). This index can take 
values between −1 and +1, being considered the 
better results the closer to +1 (Congalton and Green 
2009). Finally, and in order to compare the different 
sensors, the mean reflectance value and the standard 
deviation of all the pixels corresponding to each land 
cover class were calculated according to the results 
obtained with the best classifier obtained. These 
values were represented in the spectral signature 
graphs, in which the wavelengths (nm) are on the 
x-axis and the reflectance (dimensionless between 0 
and 1) is on the y-axis.

Spectral comparison

The UAV data at 6.04 cm/pixel size was resampled and 
aligned in QGIS to match the satellite pixel size of S2 
at 10 m employing the bilinear interpolation method, 
using the georeferenced satellite image as 
a background. In order to compare both sensor data
sets, five reflectance value areas (box of 10 × 10 m) for 
each class (vegetation, soil, snow and guano) were 
extracted from the UAV and S2 (L1 and L2). Since it is 
such a heterogeneous ecosystem, it is difficult to find 
pure pixels that only correspond to one class with S2 
imagery, especially with guano and vegetation cover. 
However, central pixels of the class cover were 
selected whenever possible.

Red edge and NIR bands were used to define 
a threshold to isolate the guano patches of the 
colonies, since guano shows a higher reflectance 
in the NIR band in comparison with other bands 

(Bird et al. 2020; Fretwell et al. 2015). Moss spectral 
behavior is quite similar to vascular plants, where 
reflectance differences between species may be 
also exhibited in the NIR region. Green vegetation 
peaked around 690–740 nm, four to five times 
higher than that of soil (Calviño-Cancela and 
Martín-Herrero 2016; Sotille et al. 2020). 
Malenovský et al. (2015), (2017)) demonstrated 
that spectral signature of healthy moss differs 
from stressed moss, particularly between 650 and 
780 nm, so we can find differences between moss 
classes with higher variability in the red edge 
region. Lichens show a weak absorption in the 
685 nm, with more variability between lichen spe
cies in the visible and NIR regions (Calviño-Cancela 
and Martín-Herrero 2016; Sotille et al. 2020). 
Overall, vegetation shows high reflectance in infra
red wavelengths and low reflectance in visible 
wavelengths, due to chlorophyll absorption and 
tissue cell structure (Sotille et al. 2020). There are 
some factors affecting bare soil reflectance that 
depends on the characteristics of the soil type 
(sand, rocks or pyroplasts), including moisture con
tent, soil texture, surface roughness or presence of 
organic matter content. These factors influence soil 
reflectance, showing a high variability between 
sensors in the visible wavelengths and from 
740 nm wavelengths (Lillesand and Kiefer 1999).

The correlation between the UAV and S2 data 
was evaluated band-by-band and pixel-by-pixel 
from the application of a linear regression model 
to the point cloud resulting from the representa
tion of the reflectance values obtained in the 
extracted pixels, and of the calculation of the coef
ficient of determination (R2). To validate the con
sistency of both sensors, the band-by-band root 
mean square error (RMSE, Eq.1), mean absolute 
error (MAE, Eq.2), and bias (Eq.3) between all the 
UAV resampled pixels and the corresponding S2 
data was calculated. 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Oi � Mið Þ
2

n

s

(1) 

MAE ¼
Pn

i¼1 Oi � Mij j

n
(2) 

bias ¼
Pn

i¼1 Oi � Mið Þ

n
(3) 
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where i represents each classification cover class, Mi 
represents the UAV data considered as reference 
value, Oi represents the S2 data and n is the sample 
size (n = 20) (Seegers et al. 2018).

Results

Image classification

All the algorithms tested in this study (Figure 3) per
formed well for the generation of thematic maps in 
the Vapor Col penguin colony, obtaining Overall 
Accuracy (OA) values above 80% in all cases. 
However, the best results were obtained with non- 
parametric machine learning classifiers, SVM (93.19% 
OA and 0.78 Cohen’s Kappa Index) and RFC (90.83% 
OA and 0.85 Cohen’s Kappa Index).

Table 3 shows the statistical parameters obtained 
after the accuracy assessment of the four machine learn
ing algorithms used for image classification, OA and 
Cohen’s Kappa index. Producer and user accuracies are 
also displayed in the table (Oloffson et al. 2014). Soil and 
snow were the thematic classes more accurately classi
fied with higher user and producer accuracies, while the 
moss cover species were the surface classes prone to 
confusion with the lowest producer accuracy values 
among all thematic classes. Regarding the values of the 
Cohen’s Kappa index, the two non-parametric machine 
learning classifiers also obtained the highest values (0.88 
SVM and 0.85 RFC) compared to the other two algo
rithms (0.77 MLC and 0.62 SAC), highlighting a high 
agreement between the generated classes in all cases.

SVM classification was generated for each sensor 
from the training regions created from the information 
obtained in situ in the study area (Figure 4). Higher 
Overall Accuracy and Cohen’s Kappa index values indi
cated that higher resolution UAV images yielded 
higher precision than lower resolution satellite images. 
For this reason, the most accurate SVM was performed 

with the multispectral camera mounted on UAV, which 
presented values of 93.19% OA and of 0.88 in the 
Cohen’s Kappa index, followed by S2L2 (87.26% OA 
and Cohen’s Kappa of 0.73), L8L2 (70.77% OA and 
Cohen’s Kappa of 0.53) and lastly of S2L1 (65.97% OA 
and Cohen’s Kappa of 0.52). The lower classification 
accuracy associated to L8L2 data is probably due to 
the higher hetereogenity holded in a 30 m L8 pixel 
compared to a 10 m S2 pixel or a centimetric UAV pixel. 
It might also be due to the atmospheric signals (water 
vapor, aerosols, sea fog, between others) that still 
remain in the data after reprocessing (see Materials 
and Methods Section for more information).

In general terms, and from the information provided 
by UAV data, in the Vapor Col penguin colony the most 
extensive land cover class was soil (212,591 m2), fol
lowed by the guano patches corresponding to the 
breeding sites (19,995 m2). With the Micasense 
RedEdge-MX dual multispectral sensor it has not only 
been possible to specify the coverage of the classes 
specified in this study with a centimetric level of detail, 
but also to differentiate between different types of 
vegetation, which as a whole (15,229 m2) did not 
exceed the extent of the cover classified as guano. In 
the S2L2 thematic map, soil was still the dominant 
cover, although vegetation (20,300 m2) and guano 
(20,500 m2) cover were similar. In addition, reflectance 
values were higher than those obtained with the sen
sor mounted in the UAV, and they did not allow differ
entiation between vegetation classes. However, if 
compared with the supervised analysis generated 
with the S2L1 data, it could be seen how it made 
important classification errors, presenting a land cover 
of 506,900 m2, as well as guano and vegetation covers 
of 37,200 m2 and 6,100 m2 respectively. With L8L2, the 
vegetation (26,100 m2) and guano (81,900 m2) covers 
were not precise enough, and as with S2, it was not 
possible to differentiate between vegetation classes. It 
is important to emphasize that these results may be 

Figure 3. Zoom of the Vapor Col penguin colony. MLC, SAC, RFC and SVM algorithms were applied to make the supervised 
classifications showed in the figure.
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influenced by the existing temporal difference in the 
data of each of the sensors, since between UAV and S2 
the difference is 6 days while between UAV and L8 the 
difference is 1 month. However, only changes in the 
snow cover could be perceptible in such a short inter
val between the data, since the area of guano and 
vegetation of the penguin colonies remains stable in 
this period of time that it also coincides with the 
Austral Summer where the snowfalls are less intense.

Spectral signature analysis

The UAV and satellite sensors reflectance spectra 
for each coverage class (soil, snow, guano and 
vegetation) are shown in Figure 5 Based on the 
general spectrum shape, S2L2 data appeared to 
show better agreement with UAV data than S2L1 
and L8L2. For these two sensors (UAV and S2L2) in 
the four classes of substrate represented, there 

Figure 4. SVM thematic maps obtained from the UAV, S2 (L1 and L2) and L8L2 imagery, with three highlighted regions of interest. In 
S2 (L1 and L2) and L8L2 RGB composite images, the area covered by the UAV in Vapor Col is indicated in yellow. Dates: UAV 
(8 February 2021), S2 (2 February 2021) and L8L2 (12 January 2021).
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seemed to be more pronounced differences in the 
spectral curve from 700 nm, coinciding with the 
Red Edge and NIR bands, while the values of 
reflectance were more consistent in the visible 
part of the spectrum. Snow, guano and vegetation 
profiles had a good match between sensors, show
ing a similar spectral signature in all cases. 
However, there were bigger differences between 
sensors when analyzing soil profiles, probably due 
to the variability introduced at each pixel when 
considering the different soil types (rocks, sand 
and pyroplasts) as a single land cover class.

Band-by-band and pixel-by-pixel comparison

Figure 6 shows the linear regression models corre
sponding to the band-by-band and pixel-by-pixel 
comparison between the UAV multispectral data 
resampled to 10 m and the S2L2 data, indicating 
that S2L2 data had good fitting to UAV with rela
tively high coefficient of determination (R2) values 
especially in the green-560 nm (R2 = 0.80), blue- 
475 nm (R2 = 0.79), red-668 nm (R2 = 0.74), 
rededge-705 nm (R2 = 0.64) and NIR-840 nm 
(R2 = 0.63) bands. However, the rededge-740 nm 
band had a weaker relationship, presenting the 
lowest R2 value (R2 = 0.55). The linear regression 
models that resulted from comparing the UAV data 
with those of S2L1 are also shown in Figure 6, with 
minimal R2 values, which indicated the poor fitting 
between the data, and highlighted the need for 
precise atmospheric correction methods for accu
rate performance of the SVM in these complex 
polar coastal areas. Results showed that the UAV 

and satellite data followed the same trend, 
although obviously the downscaling applied to 
UAV data increased the interpixel variability in the 
reflectance values.

To assess the consistency of both sensors, 
Table 4 shows the statistical spectral analysis 
applied: R2, RMSE, MAE and bias. As with R2, it 
can be observed that for all bands the S2L2 values 
were closer to the UAV data than those of S2L1, 
as indicated by lower RMSE and MAE. In all cases, 
the negative values of the bias estimation indi
cated satellite data underestimated reflectance 
compared to the UAV data. However, the values 
were close to 0 with minimal differences between 
the data, and in all cases better for S2L2 (except 
in the blue-475 nm band, which is very similar). It 
should be noted that surface reflectance data of 
the UAV was always higher than those from satel
lites, except for the bright pixels selected in areas 
covered by snow so that the five points located in 
the snow had positive bias values for all bands, 
indicating an overestimation of the reflectance 
values.

Discussion

UAVs for penguin colony ecosystem 
characterization

This study shows that high-quality data can be 
obtained from an UAV at 100 m altitude in an ecosys
tem in which the typical extreme conditions of mar
itime Antarctica render traditional field surveys very 
risky and difficult. In addition, it represents the first 
approximation in m2 of the guano cover of an 
Antarctic penguin colony on Deception Island. This 
is a fundamental piece of data to determine the 
inputs of important bioactive metals (e.g. Cu, Fe, Mn, 
Zn) that can take place toward the surface waters of 
the sea (Figure 7), since penguin guano plumes have 
been suggested as an important source of these 
metals to the ocean (Shatova et al. 2016; Sparaventi 
et al. 2021).

Antarctic flora distribution and speciation could 
also be influenced by the location of these guano 
patches in the colony, since our results show how 
the vegetation tends to grow around the areas cov
ered by guano, acting as a source of nutrients and 
metals (Tovar-Sánchez et al. 2021). This tool also 

Table 3. Accuracy Assessment of thematic maps generated from 
UAV imagery using the four algorithms tested in this study (MLC, 
SAC, SVM and RFC), including user accuracy (“U-acc”), producer 
accuracy (“P-acc”), the OA (%) and the Cohen’s Kappa index.

Class

SVM RFC MLC SAC

U-acc P-acc U-acc P-acc U-acc P-acc U-acc P-acc

Soil 94.71 97.84 90.35 95.52 99.27 88.89 95.02 85.93
Snow 98.92 82.94 98.89 68.78 87.15 99.95 95.06 45.98
Guano 78.86 99.96 79.51 99.96 77.22 98.89 76.38 98.46
Moss specie 1 86.73 78.67 95.12 29.47 82.31 40.23 76.24 60.35
Moss specie 2 89.69 49.61 94.81 34.27 77.44 77.44 75.01 63.21
Moss specie 3 92.68 27.50 92.47 97.96 48.36 48.37 49.73 78.68
Overal 

Accuracy 
(%)

93.19 90.83 89.07 82.01

Cohen’s 
Kappa

0.88 0.85 0.77 0.62
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allows us to obtain data with enough precision to 
characterize the spatial and spectral variability of the 
typical lichen and moss communities of the Antarctic 
tundra, providing a noninvasive method to analyze 
environmental changes in their micro-topography 
and physiological state (Lucieer, Robinson, and 
Turner 2011; Lucieer et al. 2014a; Malenovský et al. 
2015, 2017; Turner et al. 2014, 2018; Zmarz et al. 
2018).

Image classification performance

The four algorithms tested with UAV imagery yielded 
accurate and reliable results, with the SVM algorithm 
providing the most accurate results (93.19% OA and 
0.78 Cohen’s Kappa Index). With the SVM algorithm, 
user and producer accuracies show values above 70% 
in all cover classes except in vegetation where these 
values are especially lower in producer accuracies. 
This reflects that classification performance could be 
improved, in particular with the moss cover classes, 
where small misclassification could be mainly related 
to the spectral similarity between vegetation species. 
Several studies suggested that SVM is the best classi
fier when using a small number of training samples 
(e.g. Foody and Mathur 2004; Mountrakis, Im, and 
Ogole 2011; Rupasinghe et al. 2018), as in this case 
study. For example, Miranda et al. (2020) successfully 
apply the SVM algorithm to carry out spatio-temporal 
monitoring of the vegetation covers of ice-free areas 
in Antarctica with UAV and satellite imagery, demon
strating that they can provide information that quan
titatively describes the evolution of these ecosystems. 
That is why we use the SVM algorithm for the spectral 
comparison between remote sensing techniques, 
since it offers the most robust results.

The UAV’s centimeter-scale spatial resolution helps 
the information contained in each pixel to be more 
precise than that contained in a pixel of S2 at 10 m or 
a pixel of L8 at 30 m, which stores a more heteroge
neous amount of information among the different 
land cover classes. In this way, UAV data have the 
potential to not only specify the extent and location 
of each of the classes, but also to distinguish between 
different species of vegetation. However, the accuracy 
assessment carried out on each thematic map reflects 
that the S2L2 data do not differ so much from those of 
UAV for the generation of thematic maps in this type 
of coastal ecosystems (93.82% OA with UAV versus 

87.26% OA with S2L2). In addition, the extent of the 
vegetation and especially guano covers resulting 
from this analysis are quite similar between UAV and 
S2L2, so the S2L2 data could be used to make precise 
estimates of the amount of guano in the coastal 
colonies of Antarctic penguins. This could not be 
possible with the data from L8L2 or S2L1, which pro
vided much less accurate results for penguin colony 
size studies, as demonstrated in other research using 
Landsat data to map Adélie penguin colonies (Lynch 
and Schwaller 2014; Schwaller, Southwell, and 
Emmerson 2013). These studies confirmed that 
Landsat retrievals performed better for continental 
or regional-scale studies than in situ observations, 
although UAV and S2L2 data are more accurate for 
local studies carried out in these characteristic 
Antarctic ecosystems.

Spectral signature analysis

We evaluated the reflectance spectra of the four 
main land cover classes classified in our study area 
(soil, snow, guano, and vegetation). The L8L2 
reflectance spectra for each substrate show little 
variability in the curve due to the lower spatial 
resolution of the data. However, similar trends are 
found between UAV and S2 data (Level 1 and 2). 
The vegetation spectral curve shows a similar 
behavior for UAV and S2, with absorption minima 
in red and blue, and with reflectance peaks espe
cially in the NIR. The same happens with the spec
tral curve of the snow, where there is a slight 
difference between the UAV and S2 associated 
with the presence of shadows in the satellite 
images. These profiles show that guano has 
a high reflectance in red bands in comparison 
with other cover classes, which allows it to be 
differentiated from most types of vegetation. 
Several authors who have previously mapped 
guano with satellite imagery (Brown 2018; 
Fretwell et al. 2015; Schwaller, Benninghoff, and 
Olson 1984; Schwaller, Southwell, and Emmerson 
2013), use the distinctive behavior of guano spec
tral signature in the (SWIR) bands. In this compara
tive study, we ignore the SWIR part of the 
spectrum despite its importance, since MicaSense 
RedEdge-MX dual sensor only uses NIR bands in 
addition to standard RGB bands. Furthermore, we 
offer a reliable and precise formula for monitoring 
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Figure 5. Land cover classes reflectance spectrum for each sensor (UAV, S2 (L1 and L2) and L8L2). It should be noted that in the case of 
the UAV, the vegetation substrate has three different classes. Wavelength (nm) is represented in the x-axis and reflectance 
(dimensionless) is represented in the y-axis.

Figure 6. Pixel-by-pixel and band-by-band comparison of UAV surface reflectance data with S2 Level 2 atmospherically corrected 
product data (triangles) and with S2 Level 1 orthoimage product data (circles). Twenty pixels (n = 20) were selected in four different 
types of substrate: snow (gray color), guano (brownish color), soil (dark brown color) and vegetation (green color).
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guano from the spectral information derived from 
the red and NIR bands, without the need for spe
cialized hyperspectral equipment. Fretwell et al. 
(2015) compared the spectral signature of guano 
with information from other public spectral 
libraries, concluding that guano presents a unique 
characteristic spectral signature with peaks also in 
the red and NIR bands. It is therefore ideal for 
future studies to apply the spectral information 
derived from the cover classes classified in this 
study to other regions of Antarctica, so that it 
would be possible to generate an index or a tool 
that would allow rapid, efficient and simple estima
tion of the extent of the guano patches typical of 
the Antarctic penguin colonies as long as radio
meter measurements are taken in situ to validate 
the results.

Band-by-band and pixel-by-pixel comparison

Spatial downscaling applied to UAV data from 6.04 cm 
to 10 m to match the satellite resolution provided 
reflectance values consistent with those obtained 
with S2L2. According to the statistics obtained, S2L2 
data are more similar to the UAV data than S2L1. This 
highlights the need to carry out an atmospheric correc
tion on the satellite data, since the radiance reaching 
the sensor interacts with the atmosphere and can be 
affected by various parameters such as aerosols, 
Rayleigh, scattering, water vapor, among others. In 
this study, Sen2Cor is the processor applied to TOA 
Level 1C orthoimage product for atmospheric correc
tion, obtaining a good performance when comparing 
with UAV data. Previous studies with Sentinel-2 ima
gery in complex coastal and inland waters have 
obtained consistent results using the Sen2Cor proces
sor (e.g. Kutser et al. 2018; Pereira-Sandoval et al. 2019; 
Qing et al. 2021; Sobel, Kiaghadi, and Rifai 2020), 
although it also proves to be more effective for studies 
in terrestrial coastal ecosystems (e.g. Marzialetti et al. 
2019; Pham et al. 2019; Villa et al. 2021).

However, despite the strong correlation in the visible 
bands between UAV and S2L2 data, a significant differ
ence in reflectance was found in red edge and NIR 
bands. These differences between sensors arise as 
a result of various factors, such as the radiometric and 
atmospheric correction, signal-to-noise ratio, the spatial 
resolution of the sensors, the temporal difference 
between UAV and satellite data or the band width of 

Table 4. Statistics calculated (R2, RMSE, MAE and bias) for the 
linear regression models applied to the relationships between 
the multispectral sensor equipped in the UAV and S2 (L1 vs L2) 
for comparison.

R2 RMSE MAE bias

Blue-475 nm Band L1 0.07 0.17 0.11 −0.03
L2 0.79 0.09 0.06 −0.04

Green-560 nm Band L1 0.06 0.20 0.12 −0.09
L2 0.80 0.09 0.07 −0.06

Red-668 nm Band L1 0.01 0.24 0.15 −0.14
L2 0.74 0.14 0.10 −0.10

RedEdge-705 nm Band L1 0.01 0.24 0.17 −0.16
L2 0.64 0.19 0.14 −0.14

RedEdge-740 nm Band L1 0.03 0.25 0.19 −0.18
L2 0.55 0.19 0.15 −0.14

NIR-840 nm Band L1 0.04 0.25 0.20 −0.19
L2 0.63 0.13 0.10 −0.10

Figure 7. Sentinel-2 L2 true color composition on 2 February 2021, in which sediment plumes have been pointed out with red arrows.
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the sensors (Sozzi et al. 2020; Zabala 2017). Other studies 
have found good agreement between UAV mounted 
multispectral sensors and S2L2 data, such as Castro et al. 
(2020) who tested the correlation between both tools in 
a eutrophicated water reservoir to develop a multi-scale 
monitoring tool, or Zabala (2017), who also used the 
same tools for the monitoring of a crop environment 
obtaining a significant difference in reflectance values, 
as in our research.

Conclusions

Our results demonstrate that a UAV-mounted multi
spectral camera allowed us to obtain high-quality 
images for monitoring the key elements of the 
Antarctic penguin colonies ecosystem from their unique 
and characteristic spectral signatures. In fact, these spec
tral signatures can provide very valuable information for 
the generation of a tool that allows this methodology to 
be applied in an automated manner in other case stu
dies, producing precise maps of the flora and landforms 
of Antarctica. It would be also interesting to use these 
high-quality UAV images to accurately count the num
ber of penguins in the colonies, constituting a less intru
sive and even more precise methodology than 
traditional in situ censuses. In addition, guano cover 
estimations can be used in order to determine the 
number of penguin breeding pairs per m2 of coverage 
in each colony, or to quantify its influence in moss/ 
lichens coverage growing due to the inputs of important 
bioactive metals and nutrients from guano. This study 
evidenced the effectiveness of non-parametric machine 
learning algorithms for the generation of thematic 
maps, being the SVM the algorithm that best adapts to 
the spectral characteristics of the Antarctic ecosystem. In 
addition, it is shown that the higher spatial resolution of 
UAV data improved the precision compared to the 
satellite results, although S2L2 data also allowed the 
generation of accurate local thematic maps of 
Antarctic penguin colonies covering larger areas than 
those covered by an UAV. In contrast, the 30 m spatial 
resolution of L8 was insufficient to accurately character
ize the different elements of this highly heterogeneous 
ecosystem. This study also tested the compatibility of 
UAV data with S2 level 1 and level 2 (data after the 
Sen2Cor atmospheric correction). The results high
lighted the need to correct the S2 level 1 data to elim
inate the atmospheric interferences and residuals, 

resulting in an improvement in the overall accuracy of 
the satellite’s surface reflectance values. UAVs comple
ment the shortcomings of satellite remote sensing in 
order to take a further step in the study of polar regions 
under the scenario of global climate change.
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