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A B S T R A C T

Penguins play an essential biochemical role in the Antarctic ecosystem, being the study of their dynamics of
utmost importance to understand their environment, behaviour and populational trends in the current climate
change scenario. In this study, we used multi-rotor Unmanned Aerial Vehicles (UAVs) along the coast of the
chinstrap penguin (Pygoscelis antarcticus) colony of Vapour Col (Deception Island, Antarctica) to map potential
sites of biochemical interactions with the surrounding sea water. Several runoff discharge points were identified,
where a precise placing of environmental sampling station is suggested. Additionally, UAVs were used in
combination with Object Detection Architectures to obtain the chinstrap colony population size. Applying a
simulation for clutch initiation dates due to our off-laying peak count, we obtained an estimated range of 13,250
to 22,000 breeding pairs in the 2021/2022 breeding season, also suggesting an alternative approach using
chinstrap chicks as proxy to estimate adult numbers. This research shows the utility of UAV-deep learning for
environment characterization and wildlife monitoring, providing a solid framework for upcoming studies in the
area.

1. Introduction

Antarctic ecosystems are inhabited by a unique and widely inter-
connected wildlife, which ultimately makes this continent an idoneous
location for conducting research at the biosphere level. Additionally, the
underlying dynamics of the species interactions with their environments
make some of the Antarctic taxa a suitable proxy to understand the
trending of the polar ecosystems health, therefore resulting essential to
conduct in-depth research on specific species (Ainley, 2002; Huang
et al., 2013). In fact, recent studies have addressed the impacts of
climate change on Antarctic wildlife, evaluating the current and future
associated risks (Rogers et al., 2020), and highlighting the relevance of
assessing its present and upcoming conservation state.

One of the group of species that best characterize the Antarctic
continent are penguins. They are key mesopredators that represent the
greater portion of bird biomass in this southern polar regions (Woehler,
2002), and are not exempt from the global change effects. Indeed,
climate change is one of the main causes of an interspecific disparity

among penguin populations in the Antarctic Peninsula, as revealed by
their population trends (Clucas et al., 2014; Lynch et al., 2012).
Consequently, penguins have been broadly studied from multidisci-
plinary perspectives, addressing their diet (Lynnes et al., 2004; Rombolá
et al., 2010; Volkman et al., 1980), phenology (Black, 2016), behaviour
(Juáres et al., 2018; Lynnes et al., 2004), environment (Román et al.,
2022; Zmarz et al., 2018) and distribution (Ballard et al., 2010; Santora
et al., 2020; Trathan et al., 1996) features. More specifically, the chin-
strap penguin (Pygoscelis antarcticus) accounts for one of the largest
populations of Antarctic penguins, with close to 8 million individuals
distributed mainly along the Antarctic Peninsula and adjacent islands
(BirdLife International, 2022), contrary to the first species in abundance
of the Pygoscelis genus, the Adélie penguin (Pygoscelis adeliae), whose
population is uniformly scattered along the Antarctic coast (Mapping
Application for Penguin Populations and Projected Dynamics [WWW
Document], 2022; Strycker et al., 2020). The breeding season of chin-
strap penguins typically begins in late October to early November,
marked by nest building and egg laying. Chicks hatch around December,
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and fledging occurs by February. Their breeding phenology is influenced
by sea ice conditions and prey availability, which are being increasingly
impacted by climate change. Furthermore, their geographical pattern of
distribution also suggests a higher vulnerability, as local changes in this
area could significantly affect a large portion of their colonies.

Among the areas inhabited by chinstraps, Deception Island (South
Shetland Islands, Maritime Antarctica) offers unique topographic char-
acteristics due to its volcanic condition, and hosts almost 80,000
breeding pairs, split mainly into two colonies. The largest one (Baily
Head) is located in the eastern coast, and houses close to 60,000
breeding pairs (Naveen et al., 2012). In the opposite site of the island,
Vapour Col is located at the south-western coast, and has been surveyed
from the late 80′s. In the last decades, fieldwork at Vapour Col estimated
the population size in almost 20,000 breeding pairs (Mapping Applica-
tion for Penguin Populations and Projected Dynamics [WWW Docu-
ment], 2022; Naveen et al., 2012), noting however the existence of a
population decline of 36 % between 1991 and 2008 (Barbosa et al.,
2012). In terms of chinstrap penguin census at Vapour Col, there have
not been any documented attempts since 2011, when Naveen et al.
(2012) performed a direct-observation estimation, setting the number at
19,177 breeding pairs. Indeed, such ground-based observational census
techniques have been widely used for animal quantification during the
last decades, mainly due to technological constraints and the relatively
non-complex nature of the observation task. However, using conven-
tional methods for population estimation often results difficult to
implement in a frequent, non-invasive and high-precision quantitative
assessment of wildlife populations, and more specifically in the case of
penguins, due to their morphological and behavioural features. For
example, ground-based counting often requires reaching remote
breeding areas that suppose a logistical challenge, affecting therefore to
quantification accuracy and increasing the economic cost and invested
time (Dickens et al., 2021).

To address the limitation of these techniques, Unmanned Aerial
Vehicles (UAVs) emerge as a useful tool providing high-quality aerial
photographic data that enable a wide range of applications, like precise
census of the individuals within a colony (Guo et al., 2018; Hodgson
et al., 2017) or ecosystem characterization (Borowicz et al., 2018;
Pfeifer et al., 2019; Román et al., 2023; Zmarz et al., 2018). In parallel to
the increasing popularity of UAV usage in field surveys, machine
learning (ML) has experienced an exponential growth in the very recent
years, leading to a development of state-of-the-art models able to
incorporate and integrate large amounts of complex, non-parametric
information, learning from data extracted from observations. The
combination of UAV-based information and ML algorithms such as ob-
ject detection models, converge in a powerful tool for wildlife popula-
tional dynamics and their ecotope characterization. For example, the
chinstrap penguin has recently shown to be an important biological
source of trace elements such as iron to the Antarctic waters, contrib-
uting to the Southern Ocean upper layer fertilization (Belyaev et al.,
2023). This role of the species in trace metal ecology opens the way to
investigate how precisely these metals are discharged from the breeding
sites to the surrounding waters, and which is the correlation between the
population distribution and this trace metal release. For instance, the
rugged topography of the Vapour Col penguin colony favours the
terrestrial surface runoff, driven by the amount of day-to-day rainfall,
and containing large quantities of penguin guano and material eroded
from the island’s bedrock. The runoff dynamics of guano into the ocean
directly and indirectly impact the entire Antarctic food web, from pri-
mary producers to predators. Therefore, it is important to determine the
main discharge routes into the ocean to assess nutrient distribution and
residence time in the photic zone. Consequently, UAV-ML approach to
the parametrization of intrinsic biophysical features of a chinstrap col-
ony could potentially lead to a better understanding of the mechanisms
behind the ecological relevance of the species in the Southern Polar
environment.

Therefore, in this study we implemented the use of UAV-mounted

optical RGB and multispectral sensors in combination with deep-
learning models to characterize the main geomorphological features,
the population size and the intraspecific maturity-state based distribu-
tion (adults and chicks) at the chinstrap colony of Vapour Col. This
broad-site physical and behavioural analysis ultimately enable a more
precise, non-invasive and cost-efficient research that helps to under-
stand the ecological role of the chinstrap penguin within the Antarctic
ecosystem.

2. Material and methods

2.1. Study area

Deception Island (62◦55′S 60◦37′W) is a volcanic island located in the
South Shetland Islands archipelago, between parallels 61◦S and 63◦S,
and 120 km north of the Antarctic Peninsula. It is constituted by a
central caldera known as Port Foster, which is covered by seawater and
connects with Bransfield Strait by Neptune’s Bellow channel. The
island’s geomorphology is characterized by volcanic slopes, ash-covered
glaciers and smoky beaches (Smith et al., 2003), and has been shaped by
continuous and violent volcanic eruptions since its origin (Angulo-Pre-
ckler et al., 2021). In this study, the Vapour Col (62◦59′S 60◦44′W,
Fig. 1) penguin colony has been monitored with UAV technology. It is
settled on a seasonal ice-free surface surrounded by an abrupt slope,
where depressions act as channels both for penguins to go to/from the
nests, and for guano runoff to the ocean.

2.2. UAVs and sensors

In this study, two different UAVs were deployed for data collection:
− The DJI (Dà-Jiāng Innovations) Mavic 2 Enterprise Advanced

(M2EA) quadcopter, with a takeoff weight of 909 g, has a maximum
flight autonomy of 31 min (which can be reduced depending on weather
conditions), making this its main limiting factor for covering large areas.
However, its 297 g batteries are lightweight, facilitating the transport of
some of them to cover larger areas by conducting more flights. Its small
size when folded (214 × 91 × 84 mm) makes it easy to transport in the
field, while its wind resistance (maximum gusts of 10 m/s) and an
operating temperature range between − 10 and 40 ◦C makes it an ideal
platform for facing the extreme environmental conditions of Antarctica.
It was equipped with its incorporated 48 MP, 1/2″ CMOS optical RGB
sensor.

− The DJI Matrice 300 (M300) quadcopter, with a takeoff weight of
9 kg, has a maximum flight time of 55 min (without payload, which
results in approximately 35 min with equipped sensors, depending on
weather conditions). The weight of its batteries (1.35 kg each, with two
equipped) and the dimensions of the folded equipment (430 × 420 ×

430 mm) make transportation more challenging under the extreme
Antarctic environmental conditions. Additionally, it can withstand wind
gusts of up to 15 m/s and operate within a temperature range of − 20 to
40 ◦C. Unlike the M2EA, it can be equipped with larger and heavier
sensors, such as the dual multispectral MicaSense RedEdge-MX sensor
used in this study, which contains a total of 10 spectral bands centered in
the blue (444 nm and 475 nm), the green (531 nm and 560 nm), the red
(650 nm and 668 nm), the red edge (705 nm, 717 nm and 740 nm), and
the near-infrared (NIR, 840 nm) wavelengths. Light conditions and solar
angle changes during the flight are considered and controlled by using
the MicaSense’s own Downwelling Light Sensor with a built-in GPS.
Finally, a calibration panel (RP05-2025214-OB) was used before each
UAV flight for radiometric calibration.

2.3. Data collection

The entire Vapour Col penguin colony was surveyed during the
Spanish Antarctic Campaign 2021–2022, on January 26, 2022, covering
approximately 64 ha. At this time of the year, chinstrap penguin adults
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are immersed in the reproductive season (October to March; typical
peak of egg-laying (PEL) at mid-November; modal clutch size of two
eggs), growing nestlings to reach nest independence and subsequent
formation of “crèches”, a noticeable pattern of chick aggregation in the
colony prior to molting and fledging. The meteorological conditions
during the UAV surveys were dominated by completely covered skies
and strong permanent winds, and the flights were performed in visual
line of sight (VLOS). Flight missions were planned using the UgCS
desktop software (SPH engineering, Latvia, v.4.14). This software took
into account the terrain’s topographic features and established a series
of fixed parameters for the waypoint plans of the flights conducted in
this study, such as the flight altitude above sea level (ASL), speed (4 m/
s), duration (between 15 and 20 min per flight), trajectory (parallel to
the coast), and a 70–80% front and side overlap for all sensors across the
entire study area. Consequently, the flight altitude varied during the
flight to maintain a constant Ground Sample Distance (GSD) with the
changing topographic features, averaging 0.96 cm/px in the final RGB
orthomosaic and 80.7 cm/px in the Digital Elevation Model (DEM),
including the six different flights at heights between 30 and 40 m (AGL)
that overlapped to cover the entire Vapour Col colony with the M2EA.
On the other hand, the M300 equipped with the MicaSense sensor,
achieved an estimated GSD of 13.9 cm/px for each multispectral band.
Licensed UAV pilots (A1/A3, A2, and STS licenses according to the
European and Spanish Civil Aviation Regulations) followed the guide-
lines provided by Hodgson & Koh and the Scientific Committee on
Antarctic Research (Hodgson and Koh, 2016; SCAR, 2017) to ensure
minimal perturbance to seabirds so that UAV surveys posed minimal
environmental impacts. In this sense, a research conducted in 2021

where they studied chinstrap penguin (among others) disturbance by
UAVs and found that, behavioral responses to UAVs overflights at 30 m
were not different from control periods (Krause et al., 2021).

The software Agisoft Metashape v.1.8.4 (Agisoft LLC, St. Petersburg,
Russia) was used for a Structure from Motion (SfM) photogrammetry
process to generate final reflectance orthomosaics and topographic
products for each flight. After importing all UAV captures, a sparse point
cloud was built at the “capture alignment” step with the highest accu-
racy setting. Then, an “aggressive” depth filter and “ultra-high” quality
settings were applied for the “3D dense cloud” generation. An interpo-
lated DEM was generated from the “3D dense cloud”. Finally, the
orthomosaic was rendered using the DEM as a reference surface. The
resulting orthomosaics were projected into the coordinate system
WGS84 / UTM zone 20S (EPSG: 32720).

2.4. Guano stains delimitation

The characteristic brownish appearance of guano stains, which is
visually unmistakable with the resolution provided by the multispectral
sensor on board the UAV (and even with finer satellite remote sensing
spatial resolutions), was delimited using the machine learning algorithm
Support Vector Machine for supervised classification. This algorithm
was selected since it applies kernel functions that allow the mapping of
statistically large datasets into a higher-dimensional space where a hy-
perplane located between them aims to correctly divide different clas-
sification classes (Bahari et al., 2014; Vapnik, 2000). Miranda et al.
(2020) suggested that using a radial basis function as a kernel parameter
provides the best results when working with optically complex systems,

Fig. 1. Vapour Col chinstrap penguin colony. a) South Shetland Islands Archipelago, Deception Island is highlighted in orange. b) Sentinel-2 satellite image of
Deception Island, captured on 17 March 2023. Orange box marks the location of Vapour Col, in the Southwestern outer coast of the island. c) 3D photogrammetric
composite of Vapour Col, as captured using the DJI Mavic 2 Enterprise Advanced UAV. Within the white box, a typical shape of a guano-rich zone, indicating the
presence of chinstrap penguins. d) Zoomed white box from panel c, where a close-up view allows to differentiate each individual from aerial photography. Note that
the circular image is a reference photography of the appearance of a typical chinstrap penguin nesting area, having been taken later in the breeding season, when
most of the chicks have already undergone moulting. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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as demonstrated in Román et al. (2022) for Antarctic penguin colonies.
The software SAGA GIS (Conrad et al., 2015) was used to perform image
classification, using a training shapefile consisting of 25manually drawn
polygons of up to 1 m2 maximum for guano stains. All MicaSense mul-
tispectral bands were used as input, and the radial basis function was the
selected kernel function.

After image classification, the results were imported into QGIS (QGIS
Association, 2024) to filter out misclassification errors (threshold:
groups of 10 pixels), and to polygonise the filtered guano stains classi-
fication raster. To assess the accuracy of the image classification, an
error matrix and statistical coefficients were calculated following
Olofsson et al. (2014). This methodology compares the classification
raster with “real” maps using a stratified random sampling design. The
statistical coefficients calculated were Overall Accuracy (OA), providing
the number of pixels properly classified from the total of image pixels;
User Accuracy (U-Acc), that indicates the probability that a predicted
value is properly classified; Producer Accuracy (P-Acc), that shows the
probability that a given value is properly classified; and the Cohen’s
Kappa Index, that calculates the compromise between the classification
and ground truth values manually defined (Congalton, 2009) (See
Supplementary Table S1 for confusion matrix and accuracy assessment).

2.5. Surface runoff modelling

Surface runoff modeling was performed around guano stains to
calculate the probability of water/guano flow propagation routes and
terminal length. The QGIS software was used to perform this task using
DEM analysis. QGIS includes an extensive toolbox available for hydro-
logical analyses, located in the SAGA hydrology toolbox. In this part of
the methodology, we obtained four different hydrological
measurements:

– Catchment area, which represents the drainage basin where water
flows over the topographic terrain. For this study, the Multiple Flow
Direction (Wolock andMcCabe, 1995) model and the original DEMwere
set as input parameters, assuming that flow acts downslope from any
selected point.

– Channel network, which represents the drainage networks where
water flows over the topographic terrain. A threshold of 5 m2 for flow
direction and channel initiation, as well asthe original DEM, were used
as input parameters. The output map shows pixels with true values
where flow drains, while pixels with false values represent no drainage
pixels.

– Flow direction, which represents the main route followed by water
flow over the study area depending on elevation that determines each
pixel location. The original DEM and a minimum slope of 0.01 degrees
were set as input parameters. It also uses the “Fill Sinks” tool within the

original DEM.
– Watershed basins, which are the different areas (polygons) of the

original DEM were water would accumulate (Broster, 2006). It uses the
channel network of the DEM, and the original DEM as input parameters.

2.6. Deep learning-based penguin count

The state-of-the-art YOLOv8 object detection architecture was
selected to perform an accurate count of the chinstrap penguin in-
dividuals within the Vapour Col colony. To prepare the training dataset,
a region of interest (ROI) of 8,501× 7,717 pixels was extracted from the
original optical RGB orthomosaic, where both development stages of the
chinstrap penguins (adults and chicks) can be clearly identified.
Furthermore, to add greater contrast heterogeneity between penguins
and the ground, the substrate on the training data also varied between
vegetation, guano and bare soil. The ROI was subsequently divided in
tiles of 640 × 640 pixels (only those which were of that exact size were
used), where each penguin varied between~ 20 and~ 40 pixels (Fig. 2).
Roboflow online services (Roboflow, Inc. [WWW Document], 2023)
were used to annotate each image for 2 classes of individuals: adult,
representing the dark-feathered pattern of adult penguins; and chick,
representing the gray-feathered young individuals who had not yet
undergone molting. Each image was augmented by performing hori-
zontal and vertical flipping, for a total of 2 images per training example.
A final training dataset of 349 images was generated, with a train/
validation/test distribution of 301/32/16 images, respectively. The
dataset was exported using the YOLOv8 annotation format. Training was
performed on a local machine, with a 24 GB NVIDIA RTX4090 GPU with
CUDA 11.8. The chosen model was YOLOv8x, training a batch size of 32
for 50 epochs. Subsequently, once the model was evaluated, the original
Vapour Col orthomosaic was divided using QGIS software to create
21,378 tiles, most of which were 640 × 640 pixels (some were smaller
due to the non-perfect rectangular shape of the original colony ortho-
mosaic). Each image was then inferenced with the trained model, using
a detection threshold of 0.5. Then, OpenCV (Python resize image) was
used to mask the terrain and keep only the detected instances for each
class, which were transformed later to a multi-point shapefile in QGIS,
obtaining thus a precise location for every individual within the colony
(Fig. 2). To calculate the uncertainty associated to the model count,
another representative region of Vapour Col was isolated and subjected
to 10 detections. The number of adults and chicks was manually counted
to obtain the comparative dataset. To obtain a reasonable estimate of the
census error, false negatives and false positive data was used, calculated
from model metrics (Supplementary Table S2), obtaining a total error of
~ 13 % for adults and ~ 25 % for chicks.

Fig. 2. Schematic description of penguin count using UAV-deep learning combination. Once the photographic data is collected using the UAV, the orthomosaic is
created. Specific representative areas within the colony are selected to create a training dataset, where chinstrap penguin adults and chicks are represented over
different substrates, adding variability. After training, the model is deployed over the entirety of the colony orthomosaic, obtaining the count and distribution of
each penguin.
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2.7. Phenology-corrected count

As the aerial survey in this study was performed in late January, the
nest occupancy was significantly lower than in the PEL. Therefore, the
count of the present research is phenologically adjusted using the
approach followed by Naveen et al. (2012), where they correct Shuford
and Spear’s census in early 1987 (Shuford and Spear, 1988) using a
stochastic simulation based on Clutch Initiation Dates (CID) (Lynch
et al., 2009) (See Supplementary Table S3 and S4 for calculations). The

approximate number of breeding pairs present at the highest nest oc-
cupancy is then drawn, typically occurring in mid to late November
(Black, 2016). This will ultimately allow to account for representative
and comparable numbers of the chinstrap penguins in Vapour Col, the
first since Naveen et al. in 2011/2012 breeding season (Naveen et al.,
2012). This approach first calculates the mean CID based on mean
October temperature, effect of latitude, CID trend and the baseline CID
for the chinstrap penguin. Once the mean CID is obtained, the lag be-
tween the PEL and the model count (mc) made in this study is calculated.

Fig. 3. a) 3D reconstruction of the Vapour Col penguin colony in optical RGB colours. In yellow, the main surface runoff channels retrieved from the DEM infor-
mation; in red, the main identified guano-stained areas. The labelled white points indicate the main discharge points along the coastline. Separation between: b) the
shapefile containing the main runoff channels and the main discharge points, and c) the optical RGB orthomosaic. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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The nest attrition rate for the chinstraps (Lynch et al., 2009) is then used
to calculate the expected number of breeding pairs during the PEL, i.e.,
corrected count (cc), which is given by:

cc =
mc

1 − r⋅d

where r is the nest attrition rate and d is the number of days since the
PEL. Although the nest attrition rate and the days since the PEL have an
associated error, these are not accounted in error propagation. This is
due to the large, exponential weight the nest attrition rate has in the
overall error when the count is performed significantly later than the
PEL (Supplementary Fig. S1). Three parameters were used to alterna-
tively approximate the number of breeding pairs in Vapour Col: total
detected adults, which accounted for every detected instance made by
the model within the colony; adults detected only within the guano
stains, and all detected chicks, which were used to calculate the number
of breeding pairs (assuming the modal clutch size of two offspring per
pair).

3. Results

3.1. Surface runoff-based guano release dynamics

Fig. 3 displays the results of applying surface runoff modelling to the
UAV-based DEM over Vapour Col penguin colony, highlighting up to
five primary surface runoff routes (Supplementary Table S5). The main
guano stains (Fig. 3a) are directly connected to these routes, so rainfall
would favour the direct deposition of guano onto the surface runoff. In
addition, they may be supplemented by secondary channels depending
on the relief characteristics, potentially leading to significant discharges
into the marine environment and consequently enriching nutrients in
the adjacent coastal zone. Interestingly, although the most extense

guano stains are located in the center-east of the penguin colony, these
reside in a flatter terrain than those located in the western part of Vapour
Col, with small drainage channels spread across the terrain, that do not
seem to converge at greater canals flowing towards the ocean.

3.2. Chinstrap penguin count and distribution in Vapour Col

According to the model metrics, the model has performed signifi-
cantly well in detecting true positives, both for adults and chicks of the
chinstrap penguin (for a total error of ~ 13 % for adults and ~ 25 % for
chicks). However, as expected, the proportion of false positive chicks
yielded by the prediction is also high (~9.3 %), mainly due to the colour
of their feathers. In this sense, Vapour Col coastal area is completely
covered by rocks, most of which have similar sizes and colour to those of
the chicks. To therefore obtain an accurate estimation of the actual
number of chicks, we visually examined the entire colony orthomosaic
to better understand their distribution, concluding that there was almost
a complete absence of chicks outside the guano-stained regions. We
consequently masked the preliminary obtained chick count yielded by
the model using the guano-stained areas, keeping only those individuals
that where inside these guano-rich regions (Fig. 4a, Supplementary Fig.
S2a). Regarding adults, we re-examined the colony to assess their dis-
tribution, comparing it to the model prediction, observing that accord-
ing to the good model performance, their characteristic dark colour and
shape made adult individuals well distinguishable from other environ-
mental features, allowing the precise estimation of their numbers.
Notably, unlike the chicks, adults were distributed inside and outside the
guano-rich areas (Fig. 4b, Supplementary Fig. S2b), reflecting the
characteristic foraging behaviour during the breeding season, when
adults continuously move between the nests and the sea. Given the large
gap existing between the calculated mean CID (15 November 2021, see
Supplementary Table S1 and S2 for the exact data used in mean CID

Fig. 4. Three detection outputs considering the distribution of chinstrap penguin individuals. a) Detected chicks are mainly found within the guano stains, with
barely no instances neither detected or visually observed outside. b) Adults were detected within the guano stains and also in transit to and from these regions and
water. c) Isolated adult individuals in guano stains, if assumed that at least one individual of the breeding pair is always present at the former nest.
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calculations), and the count date, and considering the breeding cycle of
the species, it is expectable that by the time the aerial data was acquired
one or neither of the parents were present at the nest, being in or in
transit to the sea. To address this issue, we used all three types of
available information inferred form the count to obtain the corrected
counts (Table 1): 12,097 ± 1,573 total adult individuals detected by the
model, 7,420 ± 297 adult individuals present only in the guano stains
(Fig. 4c), and 12,357 ± 3,090 adults extrapolated from the number of
total counted chicks (12,357 ± 3,090 detected chicks) (as our model
does not differentiate between breeding and non-breeding individuals,
being also the count date late in the breeding season, we considered
every adult as part of a breeding pair, consequently the number of
breeding pairs will be half of the count presented above). As expected
from the original model count, after applying mean CID model using
breeding pairs as input, we obtained a similar corrected count of 21,604
± 1,404 and 22,068 ± 2,758 breeding pairs when using total adults and
total chicks as a primary source of information respectively. If only
assuming that at least one adult per breeding pair is always present at
the guano-stained area and not counting those adults outside the guano
stains, we approximate the number of breeding pairs to be 13,250 ±

256.

4. Discussion

Understanding the breeding dynamics of the chinstrap penguins at
Vapour Col colony on Deception Island is not only important to evaluate
their conservation status and assess their present and long term popu-
lational trends, but also to better comprehend the biochemical role they
play as fertilizers in the Southern Ocean. In this sense, the identification
of potential guano discharge points is key to establish coastal environ-
mental study stations directly linked to nutrient (Bosman and Hockey,
1986; Shatova et al., 2016) and metals such as iron (Belyaev et al., 2023)
increases associated with seabird guano. From a logistical perspective,
Vapour Col has a cliff zone connected to the sea on its western side,
making it inaccessible directly from the coast. Consequently, the exis-
tence of water sampling devices with UAVs (Sparaventi et al., 2022;
Tovar-Sánchez et al., 2021) requires knowledge of this valuable infor-
mation to reduce efforts, economic expenses, and time during the sur-
veys. In addition, it has been observed that guano runoffs are not evenly
distributed across main identified routes, but vary based on the topog-
raphy of the area or size of the guano (Gagnon et al., 2013). In this sense,
stations 1 and 3 constitute the best candidates to be ideal sampling
collection points at the chinstrap colony of Vapour Col. Station 1 con-
centrates the efflux of the three northern well-defined colonies, where
the flow of guano, meltwater and sediments occurs most likely at high
velocities due to the inclination of the terrain, probably allowing the
accumulation of fresher samples down the hill. On the other hand, sta-
tion 3 serves as the endpoint for the lixiviates coming from the colonies
situated on the less abrupt Vapour Col’s central hills, where the flow

should be slower than in the northern section, having the efflux enough
time to infiltrate in the slope ground and contributing to the develop-
ment of soils of ornithogenic nature. These assumptions open the op-
portunity for upcoming research on site, involving the study of Vapour
Col soil geochemical characteristics, taking advantage of the suggested
sampling points. Additionally, the proposed stations could be extended
uphill through transects in order to effectively assess the motion dy-
namics of the lixiviates.

Regarding penguin population size, similarly to Shuford and Spear,
(1988), the UAV surveys performed in this study to determine the
number of chinstrap individuals at the colony of Vapour Col occurred
significantly later than the peak of egg-laying, implying that the true
number of breeding pairs could be far higher. The model used to correct
this count and obtain an estimation of the true number of breeding in-
dividuals generated a reasonable approximation; however, certain lim-
itations in counting penguins in such a late stage of the breeding season
have to be noted. For example, when propagating error derived from the
model counting, the nest attrition rate and the number of days since the
PEL, a direct correlation is observed between days since PEL and nest
attrition rate errors. This propagation results in an exponential increase
in uncertainty, as the nest attrition rate contributes most to the overall
estimation error (Supplementary Fig. S1). Consequently, this count
should not be considered as representative of the number of chinstrap
penguins at Vapour Col due to two main reasons. First, the timing of the
flights. It is difficult to determine which of the adult individuals belong
to the breeding pair and if both adults are in the water, with the chicks
left in chrèches, i.e., offspring caring by the colony. Furthermore, the
nests that were clearly distinguishable during the PEL are no longer
visible, which neither contributes to breeding pairs identification. Due
to these limitations, the expected breeding pairs during the PEL from
total adults and adults in guano stains were calculated, revealing a
significant difference of more than 8,000 breeding pairs (Supplementary
Table S3 and S4). Second, the previous constraints added to the nest
attrition error propagation significantly amplify the uncertainty asso-
ciated to the final count. However, counting chicks as a proxy to
extrapolate the true number of adults yielded an interesting cross-
validation to estimate the true number of breeding pairs, as the ob-
tained number of breeding pairs closely matches the estimation made
accounting for all adult individuals, 21,604 ± 1,404 and 22,068 ±

2,758, respectively. For this reason, it is considered that the true number
of breeding pairs at Vapour Col colony at the peak of the 2021/2022
season is most likely to be close to 22,000 breeding pairs. One important
caveat of this assumption that inclines the balance in favour of the lower
end breeding pairs estimate is the population decline experienced by this
specific colony. This count is consistent with the census of Naveen et al.
(2012), during the 2011/2012 season, implying that the population of
chinstrap penguins has not declined during the last decade, even expe-
riencing a slight increase. If a 2.11% linear decline trend in population is
assumed (obtained from a 36 % population decrease at Vapour Col in a
span of 17 years; (Barbosa et al., 2012), the resulting number of breeding
pairs in 2021/2022 breeding season would be close to 15,500, consid-
ering the 2011/2012 census of Naveen et al. (2012). From these results
and accounting for the uncertainties, a uniform distribution of the
chinstrap penguin population at Vapour Col during the 2021/2022
breeding season has been suggested, ranging between 13,250 and
22,000 breeding pairs.

5. Conclusion

Our research provides important insights into the discharge dy-
namics of the breeding colony, identifying potential guano-discharge
points in the surrounding waters, which can help establishing
biochemical research sampling stations, guiding also the implementa-
tion of UAV water sampling devices, reducing significantly the effort,
cost and time spent in the preparation of surveys. This study also pre-
sents a practical use of UAVs in combination with Object Detection

Table 1
Comparison between the chinstrap penguin numbers detected by the object
detection model at sampling time and the corrected numbers using CIDmodel by
Lynch et al. (2009) that can be expected during PEL.

Source of information Object Detection Model count
(penguins recorded at sampling

time)

Corrected count
(expected penguins at

PEL)

Total adults (TA) 12,097 ± 1,573 43,208 ± 2,808
TA Breeding pairs 6,049 ± 787 21,604 ± 1,404

Adults within guano
stains (AGS)

7,420 ± 297 26,500 ± 512

AGS Breeding pairs 3,710 ± 297 13,250 ± 256

Total detected chicks 12,357 ± 3,090 −

Adults extrapolated
from chicks (AC)

12,357 ± 3,090 44,136 ± 5,516

AC Breeding pairs 6,179 ± 1,545 22,068 ± 2,758
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Architectures that enable an efficient monitoring and analysis of pen-
guin populations in Antarctica. While our study does not provide an
official and definitive count, it offers a reasonably approximated range
of chinstrap penguin breeding pairs in Vapour Col during the 2021/2022
season, a range that is also consistent with the previous studies and
serves as a perspective on the current population numbers of chinstrap
penguins in that colony. To provide an accurate census using the
methods mentioned in this study, future research should focus on
improving the timing, frequency, and accuracy of the UAV data acqui-
sition, which will help to drastically reduce model uncertainties,
allowing the creation of robust colony occupancy curves and analysis of
populational trends. Despite the limitations, this research aims to
contribute to the population status evaluation and conservation efforts
of the chinstrap penguin, improving our understanding of their
ecological role.
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