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Seagrasses are marine flowering plants that form extensive meadows from the inter-tidal zone up to
~50m depth. As biological and ecological Essential Biodiversity Variables, seagrass cover and
composition provide a wide range of ecosystem services. Inter-tidal seagrass meadows provide
services to many ecosystems, so monitoring their occurrence, extent, condition and diversity can be
used to indicate the biodiversity and health of local ecosystems. Current global estimates of seagrass
extent and recent reviews either do not mention inter-tidal seagrasses and their seasonal variation, or
combine them with sub-tidal seagrasses. Here, using high-spatial and high-temporal resolution
satellite data (Sentinel-2), we demonstrate a method for consistently mapping inter-tidal seagrass
meadows and their phenology at a continental scale. We were able to highlight varying seasonal
patterns that are observable across a 23° latitudinal range. Timings of peaks in seagrass extent varied
by up to 5 months, rather than the previously assumed marginal to non-existent variation in peak
timing. These results will aid management by providing high-resolution spatio-temporal monitoring
data to better inform seagrass conservation and restoration. They also highlight the high level of
seasonal variability in inter-tidal seagrass, meaning combination with sub-tidal seagrass for global
assessments will likely produce misleading or incorrect estimates.

Seagrasses, a group of floweringmarine plants, can form extensive inter and
sub-tidal meadows ranging across all continents except Antarctica. These
habitats have significant ecological and socioeconomic value1,2 by providing
key forage, refuge andnurseryhabitats forfisheries species andnon-targeted
species3–5; supporting tourism and recreation; climate regulation through
carbon sequestration6; coastal stabilisation7 and water qualitymediation8. It
is estimated that, globally, hundreds ofmillions of people rely upon seagrass
habitats for the benefits they provide through food provisioning and
livelihoods4. Yet, seagrass habitats are under increasing pressure fromdirect
and indirect anthropogenic impacts, from local to regional scales9. Many of
the effects of human pressures, including climate change, will be felt acutely

by seagrass habitats within the inter-tidal zone. This is already happening
thanks to their exposure to both aquatic and atmospheric climatic events,
vulnerability to sea level change, close proximity to effluent runoff, pollution
and eutrophication from anthropogenic sources and their spatial overlap
with coastal development and aquaculture10–12.

To effectively and sustainablymanage seagrass ecosystems, protect and
maximise the services they underpin, and safeguard against future human-
mediated impacts, we first require an understanding of ecosystem extent,
and how this may change over different spatio-temporal scales. However,
there are large uncertainties around regional andglobal estimates of seagrass
coverage, which are the baseline requirements for assessments of the
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ecological goods and services theyprovide13,14.Within global efforts to tackle
climate change, significant emphasis is being put on conservation,
restoration and expansion of Blue Carbon (BC) ecosystems, such as
seagrasses15. Restoration projects could benefit from quantifying past tra-
jectories of seagrass bed extent and phenology at a high temporal resolution.
However, regular mapping is still lacking for most inter-tidal seagrasses.

The first step to assessing variability in inter-tidal seagrass meadows
is to develop accurate, robust, repeatable and cost-effective approaches to
monitoring these habitats over appropriate spatial and temporal scales.
Earth observation (EO) with satellite imagery has been suggested to
supplement traditional monitoring of habitats at large spatial scales and
near real-time16. Optical remote sensing, depending on the sensor being
used, provides reflectance of incident sunlight across visible and near-
infra-red wavelengths, with certain wavelengths being used to estimate
the percentage cover or productivity of vegetation17. This approach has
been used to assess inter-annual variation of known monospecific sea-
grass meadows5,17–19. Different pigments and structures absorb and reflect
specific wavelengths differently 20, thus inter-tidal vegetation types can be
discriminated by their spectral reflectance signature21,22. However, simi-
larly pigmented classes, such as seagrasses and some macroalgae (e.g.
Ulvophyceae), have created confusion when mapping vegetation through
remote sensing16. Yet, efforts that make use of more complex classifica-
tion methods, such as machine and deep learning, have shown the
potential to distinguish different inter-tidal habitats from Sentinel-2 data
with high accuracy, specifically seagrass23, thus opening new perspectives
for inter-tidal seagrass mapping from space.

Contrary to sub-tidal seagrass meadows, which have been mapped at
continental scales24, inter-tidal meadows have rarely beenmapped at scales
larger than a single bay or estuary, and never at the continental scale. This
has led to gaps and uncertainties in global inter-tidal seagrass estimations.
Specifically, there is a distinct lack ofmonitoring of the temporal variation in
extent and distribution, such as long-term trajectories or inter-annual
phenology. Across the North-East Atlantic, climatological conditions, such
as temperature and light levels, and hydrodynamic processes varymarkedly
across seasons and regions, affecting the phenology of inter-tidal seagrass.
Previous studies have examined seasonality in inter-tidal seagrass popula-
tions with in situmeasurements6,25–28.WhenNorthern European inter-tidal
seagrassmeadows have been assessed, the peak in seasonal growth has been
assumed to vary minimally around summer months, even across 20°
latitude29,30. Determining the period of ‘peak’ growth or ‘peak’ extent is
therefore fundamental for standardising the measurement of seagrass
morphometrics and density across a latitudinal range29–33. Seasonal growth
patterns and retreat of above-ground extent need to be understood, con-
sidering local-to-regional variability in phenology. This will be essential for
effectively monitoring inter-tidal seagrasses as they continue to be affected
by anthropogenic pressures, such as localised disturbances and global cli-
mate change.

Previous attempts to analyse latitudinal trends in the seasonality of
seagrass biomass either concerned sub-tidal seagrass34, or were limited by
the scarcity and/or too coarse spatio-temporal resolution of available
data35,36. Here, we built a neural networkmodel to provide, for the first time,
a synoptic mapping of inter-tidal seagrass cover and extent using high-
resolution EO at a continental scale: the Intertidal Classification of Europe:
Categorising Reflectance of Emerged Areas of Marine vegetation with
Sentinel-2 (ICE CREAMS) model. We validated and applied our model to
12 inter-tidal seagrass meadows seasonally across 7 years, using almost 800
Sentienl-2 (S2) images, spanning 23° latitude from Morocco to Scotland.
Our results made it possible to analyse the latitudinal changes in inter-tidal
seagrass phenology in Europe. Our hypotheses were twofold: (1) The sea-
sonality of inter-tidal seagrass shows a clear latitudinal trend, similar to that
of terrestrial grass37 and sub-tidal seagrass34; (2) temporal variations in inter-
tidal seagrass are expected to be dictated by a myriad of biotic and abiotic
local environmental drivers; however, latitude-dependent changes are
expected to be driven by broad-scale changes in climate-related parameters
such as air temperature and solar irradiance.

Results and discussion
Seagrass phenology across North-East Atlantic
Wedeveloped a two-stepprocess to accurately and robustly assess the extent
of inter-tidal seagrass across continental scales fromSentinel-2 imagery, and
quantify seasonal variability. First, we classified inter-tidal habitats into 9
classes (bare sand, bare mud, seagrass, microphytobenthos, green macro-
algae, brownmacroalgae, yellow-greenmacroalgae, andwater) using a deep
learning Neural Network classifier: the ICE CREAMSmodel. Our classifier
was extensively trained across sites and habitat types using very high-
resolution (8mm) multispectral drone imagery and in situ observations.
Second, the Normalised Difference Vegetation Index (NDVI) was com-
puted for each seagrass pixel and converted into Seagrass Percentage Cover
using a previously validated algorithm19. The predicted seagrass classifica-
tion was validated using ~12,000 S2 pixels collated across 6 sites in Europe
from the Tamar Estuary (England) to Cádiz Bay (Spain). Validation data,
which were independent of training data, came from a combination of very
high spatial resolution, photo-interpreted drone imagery and geo-
referenced photo-quadrats (0.25m2), with the classification of inter-tidal
habitat being aggregated (most frequent class) at the S2 spatial resolution.
This was then compared to concomitant low-tide, cloud-free S2 imagery.
The ICE CREAMS model validation of the binary presence or absence of
seagrass gave an overall global accuracy of 0.82. In particular, ourmodelwas
highly successful in distinguishing seagrass from greenmacroalgae because
we used the full spectral potential of Sentinel-2 (i.e. 10 bands in the visible
and near-infrared spectral domains), whichwas previously demonstrated to
reach an accuracy of 95% to classify these two classes23. All low tide, cloud-
free Sentinel-2 imagery from 2017 to 2023 were then processed to provide
habitat classification at the 10m resolution and compute time-series of
inter-tidal seagrass extent for 12 known inter-tidal seagrassmeadows across
Western Europe and Northern Africa.

Across our sites, which ranged from Morocco to Scotland, covering
~23° of latitude (Fig. 1), strikingly different seasonal patterns in cumulative
inter-tidal seagrass cover were found, with strong maxima and minima in
the northern sites (maxima of ~10 km2 down to 0 km2 minima in the
German site), while sites in Spain, Portugal andMorocco appeared to show
smaller amplitude in their seasonal cycle (Fig. 2: maxima of ~1.5 km2 down
to ~0.9 km2 minima in Cádiz Bay). Furthermore, the maxima and minima
occurred later in the year at the more southerly sites (Figs. 2 and 3). Timing
of maximum extent ranges from late August to late September in latitudes
above 45°, while below this latitude, maximum extent occurs from
November through to late January. Timings and ranges ofminimum extent
are more spread out, with most northern sites having their minimum from
January to May. All of the more southern sites had minima from June to
early August, with the exceptions of Santander Bay and the Tagus Estuary,
which occurred from March to May.

The relative magnitude of minima is considerably greater in the north,
with extensive periods of close-to-zero seagrass cover, while the southern
sites rarely reach zero covers at any point during the year, even at their
minimum levels (e.g. Fig. 4). Likewise, the duration of these minimum
seagrass covers generally last longer in the northern sites (Fig. 3).

As thesenorthern sites are ranging frommuch lower seagrass covers up
to their maximum in extent, their growth rate is proportionally higher
(Fig. 2). Maximum growth rates, and subsequent declines, of northern sites
tend to be far higher than southern rates, with the highest growth rate in the
north (∼ 0.2 km2 w−1 in the German site) being ~26 times greater than the
highest growth rate in the south (∼ 0.0075 km2 w−1 in the Moroccan site).

Drivers of seagrass phenology
Clear differences in seasonality were shown across the 23° assessed, with
changes in timing andmagnitude of extent maxima andminima, as well as
growth rates. The range in timing ofmaxima from themost northern site to
themost southern site is from lateAugust to early February (5months). This
is contrary to many assertions that the timing of maximum inter-tidal
seagrass extent in Europe ranges from late July to early September (only
2 months)29,30 or even occurring at the same time throughout the whole
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North-East Atlantic. The seagrass extent variability was more critical at
higher latitudes, as previously reported35. While latitude seemed to drive
seagrass phenology, there were more complex patterns of influence shown
by the Temperature andDirect Solar radiation (Fig. 3b). A negative effect of
solar radiation was found across all latitudes, particularly south of 50°N. An
interpretation of this counter-intuitive effect of solar irradiance on seagrass
extent is that increased light radiation would lead to a higher chance of
desiccation in the southern sites. The temperature had a positive effect in
most northern sites, the exception being Cromarty Firth at 57.6°N, but was
negligible from 40.7°N (Ria de Aveiro Coastal Lagoon) or negative (Cádiz
Bay). It is likely thatmanydifferent abiotic andbiotic factors, both regionally
and locally, influence the timing and magnitude of seagrass seasonal phe-
nology. While not assessed here, the effects of nutrients, pollution, physical
disturbance, tidal regime, local topography and tidal timing will be highly
influential on inter-tidal seagrass phenology. To assess the effects of these
factors on seagrass extent, the underlying patterns of seagrass phenology
need to be understood, yetmany authors have highlighted the lack of up-to-
date inter-tidal seagrass phenologydata that effectively cover both inter- and
intra-annual variation9,38–40.

Earth observation at the continental scale
This work constitutes the first assessment of inter-tidal seagrass phenology
applying a consistent methodology across a continental scale, spanning
12 sites of the North-East Atlantic (over 23° of latitude), utilising 7 years of

Sentinel-2 multispectral imagery (~800 images). The use of EO, and spe-
cifically high-spatial resolution multispectral remote sensing, to map and
assess sub- and inter-tidal habitats has increased in recent years, withmany
studies assessing local to global trends in habitats5,19,22,41–44. This increase in
global scale monitoring has been aided in the availability of free-to-use
cloud-based parallel-processing tools, such as Google Earth Engine45.
However, there are many technical and practical considerations still
inherent toEO, such as spatial, temporal and spectral resolution, data access,
processing and computing capability16, where assessment objective will
dictate the choice of the sensor and the processing pipeline, by prioritising
certain elements over others.

General limitations
Within the current method, certain assumptions have beenmade that need
to be considered. Firstly, low NDVI and Seagrass Percentage Cover pixels
(below 0.25 NDVI, ~20% SPC) were removed from the analysis, meaning
some areas of low inter-tidal seagrass cover may have been missed with
potential underestimation of cumulative seagrass cover. It has also been
noted that seasonal variation in pigment composition of inter-tidal seagrass
may influence the relationship between SPC and NDVI19, although
Chlorophylla concentration,whichNDVI is a proxy for, variesminimally46.
NDVI has been shown to correspond non-linearly with vegetation cover at
high values (>0.75), but the maximum NDVI value used for conversion to
SPCwas 0.71. Furthermore, using NDVI to convert to SPC has a saturation

Fig. 1 | Inter-Tidal Seagrass meadows. Sites selec-
ted to analyse the phenology of inter-tidal seagrass
across the North-East Atlantic.
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level, where increased seagrass density when already at 100% (0.71 NDVI)
will stay at 100% regardless of potentially large differences in seagrass bio-
mass. Lastly, driftingmacroalgae (Ulvophyceae and Rhodophyceae) during
low tide may cover areas of seagrass meadows, which may also lead to
seagrass extent underestimation.

Specific limitations and advantages
Here, Sentinel-2, using 12 spectral bands at 10m resolution (low spatial
resolution bands resampled to 10m), allowed free access to 7 years of
atmospherically corrected imagery, with a revisit time of 3–5 days since the
launch of S2B to complement S2A in 2017,meaning seasonal variabilitywas

Fig. 2 | Inter-Tidal Seagrass Extent over time. Seasonal change in cumulative
seagrass cover in km2 (i) and rate of change in cumulative seagrass cover in km2 w−1

(ii) across 12 seagrass meadows spanning 23° of latitude. Panels show different sites
as labelled: a Cromarty Firth; b Strangford Lough; c Beltringharder Koog; dMilford
Haven; e Tamar Estuary; f Bourgneuf Bay; g Marennes-Oléron; h Santander Bay;

i Ria de Aveiro Coastal Lagoon; j Tagus Estuary; k Cádiz Bay and lMerja Zerga.
Points with error bars show neural network estimated cumulative cover and average
uncertainty per satellite image, while the dark line and shading show median and
89% confidence intervals. Plot labels show the site and its latitude (in degrees).
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captured across our sites with relatively high spatial and temporal resolu-
tion. The threemain constraints of these datawere (1) relatively low spectral
resolution, although recent work has shown S2 spectral resolution to be
sufficient to distinguish seagrass from other macrobenthic vegetation23, (2)
availability of low tide and cloud-free S2 imagery over the area of interest
and (3) the time span of historic data, meaning only 7 years could be
consistently assessed (2017–2023). However, for the current analysis, the
objective was to create an up-to-date description of inter-tidal seagrass
phenology across the North-East Atlantic. Using 7 years of data meant that
even in our least data-rich site (Tamar Estuary, N = 26), we had similar, if
not greater, numbersof images thanother assessmentsof inter-tidal seagrass
phenology44, while our most data-rich site was five times greater (Ria de
Aveiro Coastal Lagoon, N = 129). These data constitute more recent
assessments (2017–2023) than the most comprehensive current analysis of
seagrasses available (1880–2016)40 (these authors also combined sub-tidal
and inter-tidal seagrasses). Furthermore, the method could be applied in
almost real-time, with potential results within hours of satellite image
acquisition and, due to the long-term perspective of the Sentinel-2 mission,
our method will make it possible to continuously and consistently monitor
seagrass changes across the next few decades and detect possible shifts in
seagrass phenology47.

Seagrass restoration in a changing climate
The valued status of seagrass ecosystems, alongside their general vulner-
ability to anthropogenic pressures, and subsequent historically and con-
temporarily depleted distribution, has led to many efforts at restoration48,49.
Alongside efforts to restore other highly valuable carbon sequestering

habitats, such as mangroves and saltmarshes, restoration of inter-tidal
seagrass has currently had mixed results50, yet promising results are being
seen with new methodological advances51. To be the most successful at
restoring thesehabitats, anunderstandingof phenologywill help restoration
practitioners determine the optimal timing for planting to increase the
chances of survival and establishment. The timing and rate of seagrass
growth will vary with latitude, as shown here, as well as with other influ-
encing factors that remain to be more precisely quantified. For example,
Temperature andDirect Radiation showed contrasting effects with latitude.
Therefore, it is vitally important to understand these and other local drivers
and seasonal patterns tomaximise yields from restorationprojects.Here,we
show that in more northern sites, prolonged times of zero or close to zero,
the area of visible above-ground seagrass extent contrasts with dense and
extensive summertimemaxima. Yet, further south, there are sites where the
relative annual change in seagrass extent is far smaller. These distinct dif-
ferences in phenology mean that restoration projects across these different
regionswill also need to be equally distinct anddesignedaccordingly to local
seasonal dynamics. As global climate change affects both terrestrial and
marine vegetation phenology in the North-East Atlantic52, there is potential
that the patterns of phenology seen here will shift, with higher latitude
patterns becomingmore similar tomid-latitudes, andmid-latitude patterns
becoming more similar to low latitudes, often referred to as Tropicalisation
(Fig. 5). As shown, northern sites displayed positive relationships with
temperature, yet as temperatures increase this may increase desiccation
stress50. Such phenological shifts could have significant ecological cascading
effects, particularly for seagrass herbivores5,53 and other species closely tied
to the seagrass seasonal cycle.

Fig. 3 | Inter-Tidal Phenology Events and Effects of Environmental Drivers.
Seasonal timings in maxima and minima of cumulative seagrass cover (a) and the
population-level effect to seagrass extent (km2) from a 1 unit change in Air Tem-
perature andDirect Normal Radiation (b) across 12 seagrass meadows spanning 23°

of latitude. Points and error bars showmedian and 89% confidence intervals for a the
occurrence of the maxima or minima and b the modelled population-level effect.
Temperatures ranged from 0 to 25 (°C), and Direct Normal Radiation ranged from
0.0001 to 0.0003 (KW/m2).
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Conclusions
This research has provided the first full phenology assessment of intertidal
seagrass using 12 sites across a latitudinal gradient at a continental scale
using satellite remote sensing and associated environmental drivers. Con-
trary to established assumptions, we find that there are substantial differ-
ences in timing, magnitude and rates of change of seagrass extents in these
sites across 23° of latitude along theNorth-East Atlantic coastline. Northern
seagrass sites show the highest rates of change in extent before reaching
maximum extent during late boreal summer, being positively related to
temperature, while solar radiation showed little to no association. Southern
sites show the slowest seasonal rates of change in extent and maximum
extent in boreal autumn to winter, displaying little to no relationship with
temperature but showing a strong negative relationshipwith solar radiation.
As seagrass conservation, protection and restoration continue to grow and
develop on both European and global scales, the method and analysis used
here has highlighted how important local information is.More importantly,
perhaps, this work shows how lacking the current synoptic mapping of
inter-tidal seagrass phenology is. The remote sensing method we have

presented here (ICE CREAMS v1.0) could allow automated near real-time
inter-tidal seagrass monitoring. In turn, this would support more effective
use of effort and resources for seagrass management; providing up-to-date
and accurate estimates of this under-studied blue carbon ecosystem.

Methods
General workflow
To produce data that can be used to accurately and robustly assess the extent
of inter-tidal seagrass across continental scales from Sentinel-2 imagery, we
followed a two-step process. The first step is to classify inter-tidal habitats and
the second is to assess the percentage cover of the area defined as seagrass
habitat. These two steps can then be systematically applied to Sentinel-2
imagery to provide information on spatial and temporal inter-tidal seagrass
dynamics. The second step in this process (i.e. the computation of seagrass
per cent cover from Sentinel-2 surface reflectance) has been tested, validated
and applied elsewhere in areas of monospecific seagrass meadows19. The first
step of the process presents a more complex challenge. To overcome this
challenge, we developed a multiclass deep learning Neural Network (NN)

Fig. 4 | Visual Representation of Seasonal Differences in Inter-Tidal Seagrass
Cover. Example of distribution at maximum (right) and minimun (left) seagrass
cumulative cover from Bourgneuf Bay (a), where there is a true minimum of sea-
grass, and Cádiz Bay (b) where seagrass persists all year round. Per pixel percentage
seagrass cover (%) is superimposed over a true RGB depiction on the same day. The

plotted background Sentinel-2 imagery shows RGB composites downloaded from
the Copernicus Portal (https://browser.dataspace.copernicus.eu/). The imagery
showed for Bourgneuf Bay a were taken on the 2021-09-20, while Cádiz Bay b were
taken on the 2021-11-07.
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classifier called the Intertidal Classification of Europe: Categorising Reflec-
tance of Emerged Areas of Marine vegetation with Sentinel-2 (ICE CREAMS
v1.0). An NN classifier was selected as they are effective at multiclass clas-
sification tasks with high numbers of features, non-linear relationships and
collinearity of features54. NN classifiers can also be systematically deployed in
a wide variety of computing languages and frameworks55. To build the ICE
CREAMS model, training data were derived from high spatial resolution
drone imagery that coincided spatially and temporally with Sentinel-2 ima-
gery (exact pixels within 15 days), the model was then validated using
independent photo quadrat and RGB drone imagery that likewise coincided
spatially and temporally with Sentinel-2 imagery (Fig. 6). The ICE CREAMS
model was then applied to all low tide, cloud-free Sentinel-2 imagery from
2017 to 2023 available from 12 known inter-tidal seagrass meadows across
Western Europe and Northern Africa6,19,56–63 to provide habitat classification
at the 10m resolution. Dynamics of inter-tidal seagrass extent were assessed
by converting each seagrass pixel into Seagrass Percentage Cover19.

Neural network inter-tidal classifier
Training data. High classification accuracy at Sentinel-2’s spectral reso-
lution has previously been shown for Class level inter-tidal habitats23, so
data were labelled at the Class level for vegetated habitats alongside other
non-vegetated habitat types. Pixels were labelled into 9 classes: Bare Sand,
Bare Mud, Ulvophyceae (green macroalgae), Magnoliopsida (seagrass),
Microphytobenthos (unicellular photosynthetic eukaryotes and cyano-
bacteria forming biofilms at the sediments surface during low tide), Mixed-
Rocks with associated Phaeophyceae (brown macroalgae), Rhodophyceae
(red macroalgae), Xanthophyceae (yellow-green macroalgae) and Water.
Due to the heterogeneous nature of inter-tidal habitats, both spatially and
temporally, labelled data need to align spatially and temporally to available
Sentinel-2 imagery. Therefore, training data were collated across a range of
methods to account for this difference in spatial and temporal variability of
habitats. For classes that show greater variability in their spatial extent over
time: drone imagery-derived data were used. For classes that show spatial
fidelity over time: additional data were collected, alongside drone acqui-
sition, through visual inspection of Sentinel-2 imagery.

Drone acquisition
To adequately cover the expected spectral variability of inter-tidal habitat
classes that occur across the North-East Atlantic coast, drone imagery was
taken from multiple sites in Western Europe (Auray Estuary, Morbihan
Gulf, Bourgneuf Bay and Ria de Aveiro Coastal Lagoon: Fig. 7). Drone
imagery was acquired at two different flight altitudes (12 and 120m)
meaning pixel sizes were either 8 or 80mm, allowing the classification of

habitats at high spatial resolution. In total, these drone images covered over
4 km2 of inter-tidal habitats.

Visual inspection
To increase the balance between classes, pixels of some classes, such as bare
muds and sands, sediments containing high abundances of micro-
phytobenthos, as well as hard substrates covered by vegetation, were added to
the training dataset (Fig. 7). These pixels were selected through visual inspec-
tion of spectral signatures, true colour RGB and false colour imagery derived
from Sentinel-2 accessed and visualised through the Copernicus data portal.

Alignment of habitat and sentinel-2 imagery
All labelled data were aggregated (majority class) to the 10m resolution of
Sentinel-2, and then all Level-2A Sentinel-2 A/B images that coincided
spatially and temporally (±15 days) with these labelled were downloaded
from the Copernicus data portal. Level-2A data have already been atmo-
spherically corrected using the Sen2Cor processing algorithm64, and are
distributed as bottom-of-atmosphere (BOA) reflectance.Manual inspection
of RGB true colour was used to select cloud-free and low-tide Sentinel-2
images to remove any unusable images.

Pre-processing
All 12 bands of Sentinel-2 were resampled to 10m resolution and stan-
dardised following a Min-Max Standardisation22,23. Furthermore, normal-
ised difference vegetation index (NDVI) and normalised difference water
index (NDWI) were calculated for each pixel from the BOA Sentinel-2
reflectance values:

NDVI ¼ R 832ð Þ � R 664ð Þ
R 832ð Þ þ R 664ð Þ ð1Þ

NDWI ¼ R 560ð Þ � R 832ð Þ
R 560ð Þ þ R 832ð Þ ð2Þ

with R 560ð Þ, R 664ð Þ and R 832ð Þ being the green (Sentinel-2 band centred on
560 nm), red (Sentinel-2 band centred on 664 nm) and near-infra-red
(Sentinel-2 band centred on 832 nm) spectral domains respectively. Within
the Magniolopsida class, there is a maximum diversity of three species
Nanozostera noltei, Zostera marina and Cymodocea nodosa, although
Nanozostera noltei was the dominant species across most inter-tidal sites
assessed. This created a labelled tabular dataset of 338,526 rowswith classes in
one column and features in 26 others: 12 BOA reflectance columns, 12 Min-
Max standardised reflectance columns, and 2 columns forNDVI andNDWI.

Model building
Labelled pixels consisting of all 26 featureswere used to train a deep learning
neural network tabular learner from the FastAI framework in Python v355,65.
The model consisted of 2 hidden layers with 26,761 trainable parameters
and was fine-tuned across 20 epochs to minimise cross entropy loss using
the ADAptive Moment estimation (ADAM) optimiser. The final within-
sample error rate was 0.0365. The ICE CREAMS model provided a classi-
fication for each pixel, based on the greatest probability class.

Validation data
To ensure validation of the ICECREAMSmodel was independent ofmodel
building, several methods were employed to generate validation data. Field
campaigns were carried out by taking geo-located photo quadrats. These
photo quadrats were taken within the Tagus Estuary and Ria de Aveiro
Coastal Lagoon (Portugal66), and Bourgneuf Bay and Ria D’Etel (France).
Further validationdatawere collected throughRedGreenBlue (RGB)drone
imagery, takenwithin two estuaries in theUK(Tamar andKingsbridge) and
a bay in Spain (Cádiz: Fig. 7). As with training data, labelled validation data
were aggregated (majority class) to the 10mresolutionof Sentinel-2, then all
Level-2A Sentinel-2 A/B images that coincided spatially and temporally
(±15 days) with these labelled were downloaded from the Copernicus data

Fig. 5 | Climate change potentially altering Phenology. Theoretical diagram of
inter-tidal seagrass phenology across three different latitudes (high, medium
and low). The dotted arrows show the theoretical effect of global climate change on
shifting phenology of higher latitude seagrass meadows to be more similar to lower
latitude seagrass meadows. The vertical shaded line shows January 1st.
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portal. The ICECREAMSmodelwas applied to these Sentinel-2 images that
aligned spatially and temporally with the validation data. The model pre-
dictions were then compared to the validation data labels. Global model
accuracy (Ga)was calculated across all validationdata as the binary presence
or absence of seagrass across ~12,000 Sentinel-2 pixels: ~5000 Seagrass

Pixels and ~7000 Non-Seagrass Pixels:

Ga ¼
nTP þ nTN

nTP þ nTN þ nFP þ nFN
ð3Þ

Fig. 6 | Methodology Employed to Apply ICE CREAMS. Flow chart showing the process of Creating the Intertidal Classification of Europe: categorising reflectance of
emerged areas of marine vegetation with Sentinel-2 (ICE CREAMS v1.0) model.
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where nTP is the number of True Positives, nTN the number of True
Negatives, nFP the number of False Positives and nFN the number of False
Negatives. The ICE CREAMS model achieved a Ga of 0.82 (Fig. 8). Non-
Seagrass pixels contained a mixture of the non-seagrass classes with ~1000
green macroalgae, ~3000 bare sand and mud, ~2000 microphytobenthos
and ~1000 Mixed-Rocks with associated brown macroalgae.

Site selection. Twelve sites were selected across ~23° latitude along the
North Western Atlantic Coast of Europe and Africa (Fig. 7). Sites were
selected where known inter-tidal seagrass meadows were present6,19,56–63.
For each site, all cloud-free, low-tide Sentinel-2 L2A images were selected
from the Sentinel-2 long term archive (LTA: Table 1). Amaskwas used to

isolate only pixels within the inter-tidal area43, then the Neural Network
modelwas applied to classify inter-tidal habitats within each 100 m2 pixel.

Inter-tidal seagrass cover. The model provided a classification for each
pixel based on the greatest probability class. For every pixel where seagrass
was predicted, the seagrass percentage cover (SPC) was calculated19. Fol-
lowing this method only SPC values above 20% were selected for analysis:

SPC ¼ 172:06 � NDVI� 22:18

As each pixel is 100m2 the summed SPC within each site could be
considered the total area covered by seagrass in m2 per image. Pixels

Fig. 7 | Location of all in situ data taken from across Europe for ICE CREAMSmodel. The left hand panel shows sites used for model training, while the right hand panel
shows sites used for validation.

Fig. 8 | Accuracy of ICE CREAMS model. Binary
validation of ICECREAMS neural network showing
the proportion of total samples in an agreement
between truth and predicted seagrass and non-
seagrass pixels, with a number of total pixels within
each grid cell. External labels with numbers show
within-class sensitivity and specificity and the
positive predicted value (PPV) and negative pre-
dicted value (NPV).
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displaying less than 0.25 NDVI were removed from analysis as macro-
vegetation was not deemed to be the dominant class, this equated to an SPC
cut off of ~20. The uncertainty for each image (τ) was calculated as the
inverse of the mean of the per pixel probabilities from the classification
model divided by the global accuracy (Ga) of the model when applied to
validation data:

τ ¼ 1� �p
Ga

ð4Þ

Environmental driver data. Two environmental datasets were selected
to provide insight into drivers of seagrass extent. Monthly Air Tem-
perature and Direct Normal Radiation from 2017 to 2023 were down-
loaded from International Energy Agency and Copernicus Climate
Change Service repository67. Each inter-tidal seagrass extent value was
assigned the Temperature (°C) and direct normal radiation (W/m2) from
the month immediately preceding it and from its immediate spatial
extent.

Statistical analysis
Phenology assessment. A multilevel general additive model (GAM)68

was used to assess phenology of seagrass extent across our sites, model
parameters were estimated within a bayesian framework using the ‘brms’
and ‘RStan’ packages in R to leverage the Stan language69–72. Observed
total seagrass cover (E�i) and its uncertainty (τi) were modelled as a
function of Day of the Year with a cyclic basis spline (f ti

� �
) across

Locations (ρ) withYear (Y) as a random factor. The response variable was
modelled assuming a Student-t distribution, with weakly informative
priors (Student-T(3,0,2.5)). Model parameters were estimated using
Markov Chain Monte Carlo (MCMC) sampling, with 4 chains of 5000
iterations and a warm-up of 500.

E�i ∼ Student Ei; τi
� �

Ei ∼ Student μi; σ i
� �

μi ¼ aY i½ � þ f ti
� �

: ρ

aY i½ � ∼ Student �a; δð Þ
�a∼ Student 3; 0; 2:5ð Þ

f ti
� �

: ρ∼ Student 3; 0; 2:5ð Þ
δ∼ Student 3; 0; 2:5ð Þ
σ ∼ Student 3; 0; 2:5ð Þ

ð5Þ

Phenology metrics
To assess the differences in seagrass extent phenology across locations, 2000
posterior predictive draws were taken from the model. Phenology metrics

were taken from these modelled phenology patterns, with maxima and
minimabeing themaximumandminimumvalues of themedianprediction
across the draws. Timing of maximum andminimum extent was estimated
as the maximum and minimum for the median prediction across the 2000
draws, with uncertainty in the day of the year taken as the 89%Confidence
Interval at that maximum/minimum value. The rate of change in seagrass
extent was taken as the first derivative of the model, using a sliding window
of 7 days and reported as km2 per week (km2 w−1).

Environmental drivers. A multilevel general additive model (GAM)68

was used to assess environmental drivers of seagrass extent across our
sites, model parameters were estimated within a bayesian framework
using the ‘brms’ and ‘RStan’ packages in R to leverage the Stan
language69–72. Observed total seagrass cover (E�i) and its uncertainty (τi)
were modelled as a function of monthly averaged temperature with a
single knot (f ATi

� �
) across locations (ρ) and log transformed monthly

averaged direct normal radiation with a single knot (f ASi
� �

) across
locations (ρ) with year (Y) as a random factor. The response variable was
modelled assuming a Student-t distribution, with weakly informative
priors (Student-t(3,0,2.5)). Model parameters were estimated using
Markov Chain Monte Carlo (MCMC) sampling, with 4 chains of 5000
iterations and a warm-up of 500.

E�i ∼ Student Ei; τi
� �

Ei ∼ Student μi; σ i
� �

μi ¼ aY i½ � þ f ATi

� �
: ρþ f ASi

� �
: ρ

aY i½ � ∼ Student �a; δð Þ
�a∼ Student 3; 0; 2:5ð Þ

f ATi

� �
: ρ∼ Student 3; 0; 2:5ð Þ

f ASi
� �

: ρ∼ Student 3; 0; 2:5ð Þ
δ∼ Student 3; 0; 2:5ð Þ
σ ∼ Student 3; 0; 2:5ð Þ

ð6Þ

Environmental effects. The population-level effect estimates and 89%
confidence intervals were retrieved from the model to compare the effect
of temperature and direct normal radiation within each location.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Table 1 | Number of images analysed by location and year as well as total images analysed across all years

Number of images analysed

Location Country Latitude (oN) Longitude (oE) Area (km2) 2017 2018 2019 2020 2021 2022 2023 Total

Merja Zerga Morroco 34.8 −6.273 11 8 16 13 20 20 14 12 103

Cádiz Bay Spain 36.5 −6.226 6 3 15 14 12 15 11 14 84

Tagus Estuary Portugal 38.7 −9.025 51 7 7 9 8 9 11 9 60

Ria de Aveiro Coastal Lagoon Portugal 40.7 −8.746 14 10 20 20 14 18 24 23 129

Santander Bay Spain 43.4 −3.795 7 1 6 7 7 4 4 10 39

Marennes-Oléron Bay France 46.0 −1.154 80 3 11 10 5 11 4 3 47

Bourgneuf Bay France 47.0 −2.098 46 3 15 11 14 17 16 8 84

Tamar Estuary England 50.0 −4.191 3 0 3 2 4 9 4 4 26

Milford Haven Wales 52.0 −5.050 5 4 9 3 14 6 8 7 51

Beltringharder Koog Germany 54.6 8.608 352 5 21 11 9 12 12 11 81

Strangford Lough Northern Ireland 55.0 −5.587 23 5 9 5 5 11 10 9 54

Cromarty Firth Scotland 57.6 −4.069 8 1 10 7 3 1 5 10 37
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Data availability
All data created by the ICECREAMSmodel and analysed here are available
at https://doi.org/10.6084/m9.figshare.26069293.

Code availability
All code used to create ICE CREAMSmodel and apply it to Sentinel-2 L2A
products, as described are available at https://github.com/BedeFfinian/ICE_
CREAMS.
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